First experiences with multiple bilateral insertions of a newly developed microcatheter-compatible endovascular electroencephalogram electrode for humans with epilepsy
{"title":"First experiences with multiple bilateral insertions of a newly developed microcatheter-compatible endovascular electroencephalogram electrode for humans with epilepsy","authors":"Yosuke Masuda , Ayataka Fujimoto , Hisayuki Hosoo , Kota Araki , Hiroki Ishida , Mitsuyo Nishimura , Aiki Marushima , Eiichi Ishikawa , Yuji Matsumaru","doi":"10.1016/j.ebr.2025.100748","DOIUrl":null,"url":null,"abstract":"<div><div>Identifying epileptogenic zones non-invasively is challenging due to signal interference by the scalp and skull, necessitating invasive methods like subdural recordings and stereoelectroencephalography. Recent microcatheter advancements suggest that a microcatheter-compatible endovascular EEG (eEEG) device could overcome these barriers. We developed a thin, flexible eEEG electrode, the EP-01, for use with current microcatheters. The EP-01, comprising a platinum electrode and alloy wire coated with an electrically non-conductive polymer, was inserted via the jugular veins under local anesthesia. The EP-01 electrodes were planned to be placed in six locations: bilateral transverse sinuses, bilateral cavernous sinuses, and the anterior and posterior superior sagittal sinuses. We conducted a first-in-human study demonstrating the feasibility and efficacy of the EP-01electrodes in simultaneously recording intracranial EEG signals from multiple brain locations. The EP-01 electrodes were successfully placed as planned, except for one, without complications. Simultaneous eEEG and scalp EEG recordings were performed during a Wada test to evaluate efficacy and safety. The eEEG recorded alpha waves and slow-wave activity during propofol administration, corresponding to scalp EEG findings, with amplitudes 3–4 times higher. Post-procedural assessments confirmed cranial vessels’ patency and absence of complications. The EP-01 successfully recorded EEG signals at multiple locations in the human brain using an endovascular approach. Compared to scalp EEG, the present approach seems to have the potential to record higher-amplitude EEG. However, the study was limited to short-term recordings without epileptic discharges. Further investigations, including long-term placement, are thus needed for seizure recordings and safety evaluations.</div></div>","PeriodicalId":36558,"journal":{"name":"Epilepsy and Behavior Reports","volume":"29 ","pages":"Article 100748"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsy and Behavior Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589986425000085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying epileptogenic zones non-invasively is challenging due to signal interference by the scalp and skull, necessitating invasive methods like subdural recordings and stereoelectroencephalography. Recent microcatheter advancements suggest that a microcatheter-compatible endovascular EEG (eEEG) device could overcome these barriers. We developed a thin, flexible eEEG electrode, the EP-01, for use with current microcatheters. The EP-01, comprising a platinum electrode and alloy wire coated with an electrically non-conductive polymer, was inserted via the jugular veins under local anesthesia. The EP-01 electrodes were planned to be placed in six locations: bilateral transverse sinuses, bilateral cavernous sinuses, and the anterior and posterior superior sagittal sinuses. We conducted a first-in-human study demonstrating the feasibility and efficacy of the EP-01electrodes in simultaneously recording intracranial EEG signals from multiple brain locations. The EP-01 electrodes were successfully placed as planned, except for one, without complications. Simultaneous eEEG and scalp EEG recordings were performed during a Wada test to evaluate efficacy and safety. The eEEG recorded alpha waves and slow-wave activity during propofol administration, corresponding to scalp EEG findings, with amplitudes 3–4 times higher. Post-procedural assessments confirmed cranial vessels’ patency and absence of complications. The EP-01 successfully recorded EEG signals at multiple locations in the human brain using an endovascular approach. Compared to scalp EEG, the present approach seems to have the potential to record higher-amplitude EEG. However, the study was limited to short-term recordings without epileptic discharges. Further investigations, including long-term placement, are thus needed for seizure recordings and safety evaluations.