Visual comparative analytics of multimodal transportation

IF 3.8 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Visual Informatics Pub Date : 2025-01-16 DOI:10.1016/j.visinf.2025.01.001
Zikun Deng , Haoming Chen , Qing-Long Lu , Zicheng Su , Tobias Schreck , Jie Bao , Yi Cai
{"title":"Visual comparative analytics of multimodal transportation","authors":"Zikun Deng ,&nbsp;Haoming Chen ,&nbsp;Qing-Long Lu ,&nbsp;Zicheng Su ,&nbsp;Tobias Schreck ,&nbsp;Jie Bao ,&nbsp;Yi Cai","doi":"10.1016/j.visinf.2025.01.001","DOIUrl":null,"url":null,"abstract":"<div><div>Contemporary urban transportation systems frequently depend on a variety of modes to provide residents with travel services. Understanding a multimodal transportation system is pivotal for devising well-informed planning; however, it is also inherently challenging for traffic analysts and planners. This challenge stems from the necessity of evaluating and contrasting the quality of transportation services across multiple modes. Existing methods are constrained in offering comprehensive insights into the system, primarily due to the inadequacy of multimodal traffic data necessary for fair comparisons and their inability to equip analysts and planners with the means for exploration and reasoned analysis within the urban spatial context. To this end, we first acquire sufficient multimodal trips leveraging well-established navigation platforms that can estimate the routes with the least travel time given an origin and a destination (an OD pair). We also propose TraDyssey, a visual analytics system that enables analysts and planners to evaluate and compare multiple modes by exploring acquired massive multimodal trips. TraDyssey follows a streamlined query-and-explore workflow supported by user-friendly and effective interactive visualizations. Specifically, a revisited difference-aware parallel coordinate plot (PCP) is designed for overall mode comparisons based on multimodal trips. Trip groups can be flexibly queried on the PCP based on differential features across modes. The queried trips are then organized and presented on a geographic map by OD pairs, forming a group-OD-trip hierarchy of visual exploration. Domain experts gained valuable insights into transportation planning through real-world case studies using TraDyssey.</div></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"9 1","pages":"Pages 18-30"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X25000014","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Contemporary urban transportation systems frequently depend on a variety of modes to provide residents with travel services. Understanding a multimodal transportation system is pivotal for devising well-informed planning; however, it is also inherently challenging for traffic analysts and planners. This challenge stems from the necessity of evaluating and contrasting the quality of transportation services across multiple modes. Existing methods are constrained in offering comprehensive insights into the system, primarily due to the inadequacy of multimodal traffic data necessary for fair comparisons and their inability to equip analysts and planners with the means for exploration and reasoned analysis within the urban spatial context. To this end, we first acquire sufficient multimodal trips leveraging well-established navigation platforms that can estimate the routes with the least travel time given an origin and a destination (an OD pair). We also propose TraDyssey, a visual analytics system that enables analysts and planners to evaluate and compare multiple modes by exploring acquired massive multimodal trips. TraDyssey follows a streamlined query-and-explore workflow supported by user-friendly and effective interactive visualizations. Specifically, a revisited difference-aware parallel coordinate plot (PCP) is designed for overall mode comparisons based on multimodal trips. Trip groups can be flexibly queried on the PCP based on differential features across modes. The queried trips are then organized and presented on a geographic map by OD pairs, forming a group-OD-trip hierarchy of visual exploration. Domain experts gained valuable insights into transportation planning through real-world case studies using TraDyssey.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
当代城市交通系统通常依靠多种模式为居民提供出行服务。了解多式联运系统对于制定明智的规划至关重要,但对交通分析师和规划师来说,这本身也是一项挑战。这一挑战源于对多种交通方式的交通服务质量进行评估和对比的必要性。现有方法在提供对系统的全面见解方面受到限制,主要原因是缺乏进行公平比较所需的多模式交通数据,以及无法为分析师和规划师提供在城市空间背景下进行探索和合理分析的手段。为此,我们首先利用成熟的导航平台获取足够的多式联运出行数据,这些平台可以根据起点和终点(OD 对)估算出旅行时间最少的路线。我们还提出了 TraDyssey,这是一个可视化分析系统,使分析师和规划师能够通过探索获取的大量多式联运行程来评估和比较多种模式。TraDyssey 采用简化的查询和探索工作流程,并辅以用户友好和有效的交互式可视化。具体来说,基于多式联运的整体模式比较设计了一个重新设计的差异感知平行坐标图(PCP)。根据不同模式的差异特征,可以在平行坐标图上灵活地查询行程组。然后,查询到的行程按 OD 对在地理地图上进行组织和展示,形成一个可视化探索的组-OD-行程层次结构。领域专家通过使用 TraDyssey 进行实际案例研究,对交通规划获得了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Visual Informatics
Visual Informatics Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.70
自引率
3.30%
发文量
33
审稿时长
79 days
期刊最新文献
Visual comparative analytics of multimodal transportation Out-of-focus artifacts mitigation and autofocus methods for 3D displays Transforming cinematography lighting education in the metaverse Editorial Board ArtEyer: Enriching GPT-based agents with contextual data visualizations for fine art authentication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1