Haiying Zhou , Yangwu Chen , Wu Yan , Xiao Chen , Yin Zi
{"title":"Advances and challenges in biomaterials for tendon and enthesis repair","authors":"Haiying Zhou , Yangwu Chen , Wu Yan , Xiao Chen , Yin Zi","doi":"10.1016/j.bioactmat.2025.01.001","DOIUrl":null,"url":null,"abstract":"<div><div>Tendon and enthesis injuries are a global health problem affecting millions of people, causing huge medical expenditure and labor loss every year. However, due to their intricate tissue architecture, unique mechanical properties, and especially their sluggish and limited innate regenerative capacity, repairing these injuries remains a formidable clinical challenge. Here, we present a comprehensive review of biomaterials advances in tendon and enthesis repair recently. These biomaterials are categorized into two primary groups based on their potential clinical application conditions: biomaterials for T/E repairing and biomaterials for T/E replacement. The T/E repairing biomaterials were further divided into two groups: mechanical-enhanced biomaterials and bioactive biomaterials, according to the approaches they used to improve sutured tendon healing. We delve into the characteristics and underlying mechanisms of these various biomaterials to gain a deeper understanding of the current landscape in tendon and enthesis repair biomaterials. This review aims to highlight the prominent advancements while identifying the remaining gaps, ultimately inspiring future biomaterial design strategies.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"47 ","pages":"Pages 531-545"},"PeriodicalIF":18.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25000015","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tendon and enthesis injuries are a global health problem affecting millions of people, causing huge medical expenditure and labor loss every year. However, due to their intricate tissue architecture, unique mechanical properties, and especially their sluggish and limited innate regenerative capacity, repairing these injuries remains a formidable clinical challenge. Here, we present a comprehensive review of biomaterials advances in tendon and enthesis repair recently. These biomaterials are categorized into two primary groups based on their potential clinical application conditions: biomaterials for T/E repairing and biomaterials for T/E replacement. The T/E repairing biomaterials were further divided into two groups: mechanical-enhanced biomaterials and bioactive biomaterials, according to the approaches they used to improve sutured tendon healing. We delve into the characteristics and underlying mechanisms of these various biomaterials to gain a deeper understanding of the current landscape in tendon and enthesis repair biomaterials. This review aims to highlight the prominent advancements while identifying the remaining gaps, ultimately inspiring future biomaterial design strategies.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.