Full-Wave Simulations of Forest at L-Band With Fast Hybrid Multiple Scattering Theory Method and Comparison With GNSS Signals

IF 4.7 2区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing Pub Date : 2025-01-23 DOI:10.1109/JSTARS.2025.3533313
Jongwoo Jeong;Leung Tsang;Mehmet Kurum;Abesh Ghosh;Andreas Colliander;Simon Yueh;Kyle McDonald;Nicholas Steiner;Michael H. Cosh
{"title":"Full-Wave Simulations of Forest at L-Band With Fast Hybrid Multiple Scattering Theory Method and Comparison With GNSS Signals","authors":"Jongwoo Jeong;Leung Tsang;Mehmet Kurum;Abesh Ghosh;Andreas Colliander;Simon Yueh;Kyle McDonald;Nicholas Steiner;Michael H. Cosh","doi":"10.1109/JSTARS.2025.3533313","DOIUrl":null,"url":null,"abstract":"Full-wave simulations at L-band using the fast hybrid multiple scattering theory method (FHMSTM) have been applied to the Harvard Forest in Massachusetts using the Soil Moisture Active Passive Validation Experiment 2022 (SMAPVEX22) dataset. Due to the limitations of commercial full-wave electromagnetic solvers, the FHMSTM is our choice considering its efficient and fast solutions. During SMAPVEX22, scientists collected a dataset of tree sizes, tree positions (derived from light detection and ranging measurement), and microwave signals utilizing the Global Navigation Satellite System Transmissometry approach. The 3-D geometric forest model provides 300 trees with heights up to 19 m by processing the dataset. We import the forest model into the FHMSTM and analyze microwave propagation at MA401. The FHMSTM analysis shows that the transmissivity ranges from 0.627 to 0.674 for the vertically polarized incident wave source and from 0.593 to 0.665 for the horizontally polarized incident wave source. To validate the FHMSTM, a comparison is made with the GNSS signals. The comparison results of microwaves are in good agreement, demonstrating the physical results such as shadowing effects under the trees and higher electric amplitudes at some points in forests compared to that of the open area. We also analyze the effects of tapered trees in this study.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"5395-5405"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10850750","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10850750/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Full-wave simulations at L-band using the fast hybrid multiple scattering theory method (FHMSTM) have been applied to the Harvard Forest in Massachusetts using the Soil Moisture Active Passive Validation Experiment 2022 (SMAPVEX22) dataset. Due to the limitations of commercial full-wave electromagnetic solvers, the FHMSTM is our choice considering its efficient and fast solutions. During SMAPVEX22, scientists collected a dataset of tree sizes, tree positions (derived from light detection and ranging measurement), and microwave signals utilizing the Global Navigation Satellite System Transmissometry approach. The 3-D geometric forest model provides 300 trees with heights up to 19 m by processing the dataset. We import the forest model into the FHMSTM and analyze microwave propagation at MA401. The FHMSTM analysis shows that the transmissivity ranges from 0.627 to 0.674 for the vertically polarized incident wave source and from 0.593 to 0.665 for the horizontally polarized incident wave source. To validate the FHMSTM, a comparison is made with the GNSS signals. The comparison results of microwaves are in good agreement, demonstrating the physical results such as shadowing effects under the trees and higher electric amplitudes at some points in forests compared to that of the open area. We also analyze the effects of tapered trees in this study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.30
自引率
10.90%
发文量
563
审稿时长
4.7 months
期刊介绍: The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.
期刊最新文献
Deep Learning-Based Interpolation for Ground Penetrating Radar Data Reconstruction Enabling Advanced Land Cover Analytics: An Integrated Data Extraction Pipeline for Predictive Modeling With the Dynamic World Dataset A Kriging Interpolation-Enhanced MART for Nonuniform Observational Data in Geosynchronous SAR-Based Computerized Ionospheric Tomography A New Fast Sparse Unmixing Algorithm Based on Adaptive Spectral Library Pruning and Nesterov Optimization An Improved Man-Made Structure Detection Method for Multi-aspect Polarimetric SAR Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1