Nitrogen-doped carbon materials have been widely used for the constructions of single-atom catalysts, while the effect of different species of doped nitrogen on the catalytic activity of CO2 electroreduction has rarely been investigated. Here we found that pyrrolic-N coordinated Ni2+ catalysts display much higher electrocatalytic CO2-to-CO activity and selectivity than the corresponding pyridinic-N coordinated low valent Ni(0−+2) catalysts, and pyrrolic-N coordinated Ni2 dual-atoms catalyst of Ni2/N-CNTs exhibits the best electrocatalytic performance, with over 90% Faradaic efficiencies in a broad potentials from −0.6 to −1.2 V vs. reversible hydrogen electrode, as well as an outstanding CO specific current of 56.2 A/mgNi and high turnover frequency of 6.2 × 104 h−1, over 7-times higher than those of pyridinic-N coordinated Ni catalysts. Electrochemical results indicate the weak electron-donor nature of pyrrolic-N facilitates the generation of a reduced active site at low overpotential for boosting CO2 electroreduction. Density functional theory calculations reveal that the reaction free energy for the *COOH formation on pyrrolic-N coordinated Ni catalysts are lower than those on pyridinic-N coordinated Ni catalysts, and a H2O-adsorbed Ni2/N-CNTs displays the optimized reaction free energy for both *COOH formation and CO desorption, which derive the best catalytic performance.