Fire Protection of Steel Beam by OSB Claddings—A Fire Experiment and Numerical Models

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Fire and Materials Pub Date : 2024-12-26 DOI:10.1002/fam.3260
Jakub Šejna, Vojtěch Šálek, Stanislav Šulc, Kamila Cábová, Vít Šmilauer, Slávek Zbirovský, Milan Jahoda, František Wald
{"title":"Fire Protection of Steel Beam by OSB Claddings—A Fire Experiment and Numerical Models","authors":"Jakub Šejna,&nbsp;Vojtěch Šálek,&nbsp;Stanislav Šulc,&nbsp;Kamila Cábová,&nbsp;Vít Šmilauer,&nbsp;Slávek Zbirovský,&nbsp;Milan Jahoda,&nbsp;František Wald","doi":"10.1002/fam.3260","DOIUrl":null,"url":null,"abstract":"<p>This paper presents the results of a standard fire resistance test of a loaded steel beam in a horizontal furnace. The beam was tested in three configurations: (1) unprotected, (2) protected with a single 22 mm layer of oriented strand board, and (3) protected with a double layer of the same cladding. The study also describes the development of a model in Fire Dynamics Simulator to predict the thermal conditions in the furnace and to observe the temperature trends on the beam surface, on the cladding, and at various depths in the cladding. A comparison between calculated and measured temperatures showed good agreement for the unprotected beam. However, for the protected beams, the model underestimated temperatures after 15 and 30 min for the single-layer and double-layer protection, respectively. Several potential sources for the discrepancies are identified. The main reason lies probably in the model's inability to correctly account for the effect of gaps in the cladding joints. Future work will focus on improving the accuracy of the model by removing these identified limitations, with particular attention to the behavior of the cladding as a passive fire protection material.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 2","pages":"196-214"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fam.3260","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire and Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fam.3260","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the results of a standard fire resistance test of a loaded steel beam in a horizontal furnace. The beam was tested in three configurations: (1) unprotected, (2) protected with a single 22 mm layer of oriented strand board, and (3) protected with a double layer of the same cladding. The study also describes the development of a model in Fire Dynamics Simulator to predict the thermal conditions in the furnace and to observe the temperature trends on the beam surface, on the cladding, and at various depths in the cladding. A comparison between calculated and measured temperatures showed good agreement for the unprotected beam. However, for the protected beams, the model underestimated temperatures after 15 and 30 min for the single-layer and double-layer protection, respectively. Several potential sources for the discrepancies are identified. The main reason lies probably in the model's inability to correctly account for the effect of gaps in the cladding joints. Future work will focus on improving the accuracy of the model by removing these identified limitations, with particular attention to the behavior of the cladding as a passive fire protection material.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Fire and Materials
Fire and Materials 工程技术-材料科学:综合
CiteScore
4.60
自引率
5.30%
发文量
72
审稿时长
3 months
期刊介绍: Fire and Materials is an international journal for scientific and technological communications directed at the fire properties of materials and the products into which they are made. This covers all aspects of the polymer field and the end uses where polymers find application; the important developments in the fields of natural products - wood and cellulosics; non-polymeric materials - metals and ceramics; as well as the chemistry and industrial applications of fire retardant chemicals. Contributions will be particularly welcomed on heat release; properties of combustion products - smoke opacity, toxicity and corrosivity; modelling and testing.
期刊最新文献
Issue Information Laboratory-Scale Assessment of Carbon-Epoxy Structural U-Channels Exposed to Flange Heating Issue Information Fire Protection of Steel Beam by OSB Claddings—A Fire Experiment and Numerical Models Research on Fire Smoke Characteristics and Key Factor Evaluation in High-Altitude Traffic Tunnels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1