RNA Interference Targeting Small Heat Shock Protein B8 Failed to Improve Distal Hereditary Motor Neuropathy in the Mouse Model

IF 3.2 4区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Gene Medicine Pub Date : 2025-02-19 DOI:10.1002/jgm.70013
Leen Vendredy, Vicky De Winter, Jonas Van Lent, Jasmien Orije, Tatiana Da Silva Authier, Istvan Katona, Bob Asselbergh, Elias Adriaenssens, Joachim Weis, Marleen Verhoye, Vincent Timmerman
{"title":"RNA Interference Targeting Small Heat Shock Protein B8 Failed to Improve Distal Hereditary Motor Neuropathy in the Mouse Model","authors":"Leen Vendredy,&nbsp;Vicky De Winter,&nbsp;Jonas Van Lent,&nbsp;Jasmien Orije,&nbsp;Tatiana Da Silva Authier,&nbsp;Istvan Katona,&nbsp;Bob Asselbergh,&nbsp;Elias Adriaenssens,&nbsp;Joachim Weis,&nbsp;Marleen Verhoye,&nbsp;Vincent Timmerman","doi":"10.1002/jgm.70013","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Missense mutations in the <i>HSPB8</i> gene, encoding the small heat shock protein B8, cause distal hereditary motor neuropathy (dHMN) or an axonal form of Charcot–Marie–Tooth disease (CMT subtype 2L). Mice expressing mutant Hspb8 (Lys141Asn) mimic the human disease, whereas mice lacking Hspb8 show no overt phenotype. We aimed to design an RNA interference treatment strategy that rescues the mutant HSPB8 neuronal and muscle phenotype in patient-derived motor neurons and in a knock-in mouse model of CMT2L/dHMN.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We optimized RNA interference sequences targeting both human <i>HSPB8</i> and mouse <i>HspB8</i> transcripts with the aim to alleviate disease symptoms. We used human induced pluripotent stem cells and the Hspb8 knock-in mouse model. We designed lenti- and adeno-associated viral vectors that contained the short-hairpin RNA constructs. We performed expression and microscopy studies, magnetic resonance imaging, behaviour analysis and electrophysiology.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>In CMT2L patient-derived induced pluripotent stem cells differentiated towards motor neurons, reducing the HSPB8 expression with a short-hairpin RNA (shRNA), directed towards the 3′ untranslated region (3′UTR), ameliorated the morphology and fragmentation of mitochondria. The AAV9-mediated treatment of the 3′UTR shRNA construct, under neuron-specific regulation, in Hspb8 knock-in mice showed inconclusive results towards functional improvement upon expression studies, magnetic resonance imaging and neuropathological findings.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Given the limited beneficial effect of the treatment, the RNA interference–mediated reduction of <i>HSPB8</i>/<i>Hspb8</i> expression might not be the best therapeutic strategy to treat dHMN/CMT2L, unless a higher viral load and earlier treatment can be applied to the mouse model.</p>\n </section>\n </div>","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":"27 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Gene Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgm.70013","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Missense mutations in the HSPB8 gene, encoding the small heat shock protein B8, cause distal hereditary motor neuropathy (dHMN) or an axonal form of Charcot–Marie–Tooth disease (CMT subtype 2L). Mice expressing mutant Hspb8 (Lys141Asn) mimic the human disease, whereas mice lacking Hspb8 show no overt phenotype. We aimed to design an RNA interference treatment strategy that rescues the mutant HSPB8 neuronal and muscle phenotype in patient-derived motor neurons and in a knock-in mouse model of CMT2L/dHMN.

Methods

We optimized RNA interference sequences targeting both human HSPB8 and mouse HspB8 transcripts with the aim to alleviate disease symptoms. We used human induced pluripotent stem cells and the Hspb8 knock-in mouse model. We designed lenti- and adeno-associated viral vectors that contained the short-hairpin RNA constructs. We performed expression and microscopy studies, magnetic resonance imaging, behaviour analysis and electrophysiology.

Results

In CMT2L patient-derived induced pluripotent stem cells differentiated towards motor neurons, reducing the HSPB8 expression with a short-hairpin RNA (shRNA), directed towards the 3′ untranslated region (3′UTR), ameliorated the morphology and fragmentation of mitochondria. The AAV9-mediated treatment of the 3′UTR shRNA construct, under neuron-specific regulation, in Hspb8 knock-in mice showed inconclusive results towards functional improvement upon expression studies, magnetic resonance imaging and neuropathological findings.

Conclusions

Given the limited beneficial effect of the treatment, the RNA interference–mediated reduction of HSPB8/Hspb8 expression might not be the best therapeutic strategy to treat dHMN/CMT2L, unless a higher viral load and earlier treatment can be applied to the mouse model.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Gene Medicine
Journal of Gene Medicine 医学-生物工程与应用微生物
CiteScore
6.40
自引率
0.00%
发文量
80
审稿时长
6-12 weeks
期刊介绍: The aims and scope of The Journal of Gene Medicine include cutting-edge science of gene transfer and its applications in gene and cell therapy, genome editing with precision nucleases, epigenetic modifications of host genome by small molecules, siRNA, microRNA and other noncoding RNAs as therapeutic gene-modulating agents or targets, biomarkers for precision medicine, and gene-based prognostic/diagnostic studies. Key areas of interest are the design of novel synthetic and viral vectors, novel therapeutic nucleic acids such as mRNA, modified microRNAs and siRNAs, antagomirs, aptamers, antisense and exon-skipping agents, refined genome editing tools using nucleic acid /protein combinations, physically or biologically targeted delivery and gene modulation, ex vivo or in vivo pharmacological studies including animal models, and human clinical trials. Papers presenting research into the mechanisms underlying transfer and action of gene medicines, the application of the new technologies for stem cell modification or nucleic acid based vaccines, the identification of new genetic or epigenetic variations as biomarkers to direct precision medicine, and the preclinical/clinical development of gene/expression signatures indicative of diagnosis or predictive of prognosis are also encouraged.
期刊最新文献
The Mechanisms, Research Status, and Future Prospects of m6A Modification in Breast Cancer RNA Interference Targeting Small Heat Shock Protein B8 Failed to Improve Distal Hereditary Motor Neuropathy in the Mouse Model Issue Information FOXA3: A Novel Tumor Suppressor in Esophageal Squamous Cell Carcinoma Betulinic Acid Inhibits Glioma Progression by Inducing Ferroptosis Through the PI3K/Akt and NRF2/HO-1 Pathways
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1