Enantioselective Alkyl-Acyl Radical Cross-Coupling Enabled by Metallaphotoredox Catalysis.

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2025-02-19 DOI:10.1021/jacs.4c15275
Tao Li, Zhen Xu, Yongliang Huang, Weisai Zu, Haohua Huo
{"title":"Enantioselective Alkyl-Acyl Radical Cross-Coupling Enabled by Metallaphotoredox Catalysis.","authors":"Tao Li, Zhen Xu, Yongliang Huang, Weisai Zu, Haohua Huo","doi":"10.1021/jacs.4c15275","DOIUrl":null,"url":null,"abstract":"<p><p>Radical-radical cross-coupling (RCC) offers a promising approach for carbon-carbon bond formation in organic synthesis, particularly for creating complex, three-dimensional molecules. However, achieving both cross- and enantioselectivity in RCC reactions has remained a significant challenge. Here, we report a novel metallaphotoredox platform that enables highly enantioselective decarboxylative coupling of carboxylic acid derivatives with aldehydes. Our strategy leverages independent control over radical generation and subsequent enantioselective bond formation through fine-tuning of a common photocatalyst and a simple chiral bis(oxazoline) nickel catalyst. This redox-neutral protocol requires no exogenous oxidants or reductants and demonstrates broad substrate scope and functional group compatibility in the synthesis of enantioenriched α-aryl and α-amino ketones. The α-amino ketone products can be readily transformed into valuable β-amino alcohols, streamlining access to these important motifs. Furthermore, we showcase the potential of this approach for more challenging enantioselective C(sp<sup>3</sup>)-C(sp<sup>3</sup>) alkyl-alkyl RCC reactions. This unified platform for enantioselective alkyl-acyl radical cross-coupling represents a significant advance in asymmetric catalysis and underscores the potential for metallaphotoredox catalysis to exploit new mechanisms to solve long-standing synthetic problems.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c15275","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Radical-radical cross-coupling (RCC) offers a promising approach for carbon-carbon bond formation in organic synthesis, particularly for creating complex, three-dimensional molecules. However, achieving both cross- and enantioselectivity in RCC reactions has remained a significant challenge. Here, we report a novel metallaphotoredox platform that enables highly enantioselective decarboxylative coupling of carboxylic acid derivatives with aldehydes. Our strategy leverages independent control over radical generation and subsequent enantioselective bond formation through fine-tuning of a common photocatalyst and a simple chiral bis(oxazoline) nickel catalyst. This redox-neutral protocol requires no exogenous oxidants or reductants and demonstrates broad substrate scope and functional group compatibility in the synthesis of enantioenriched α-aryl and α-amino ketones. The α-amino ketone products can be readily transformed into valuable β-amino alcohols, streamlining access to these important motifs. Furthermore, we showcase the potential of this approach for more challenging enantioselective C(sp3)-C(sp3) alkyl-alkyl RCC reactions. This unified platform for enantioselective alkyl-acyl radical cross-coupling represents a significant advance in asymmetric catalysis and underscores the potential for metallaphotoredox catalysis to exploit new mechanisms to solve long-standing synthetic problems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Amplifying Magnetic Field Effects on Upconversion Emission via Molecular Qubit-Driven Triplet-Triplet Annihilation. Asymmetric Radical Cyclopropanation of α,β-Unsaturated Amides with α-Boryl and α-Silyl Dibromomethanes via Cr(II)-Based Metalloradical Catalysis. Interfacial Hydrogen-Bond Network Regulation Tuned Water Dissociation Enables Selective Chlorination of Alkenes. Temperature-Dependent Mixed Valency in the Hexagonal Perovskite Cs3NaFe2Cl9. Triggered Inversion of Dual Responsive Diblock Copolypeptide Vesicles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1