Saleh Assadi, Samuel C Lamont, Nitin Hansoge, Zhuonan Liu, Victor Crespo-Cuevas, Fay Salmon, Franck J Vernerey
{"title":"Nonaffine motion and network reorganization in entangled polymer networks.","authors":"Saleh Assadi, Samuel C Lamont, Nitin Hansoge, Zhuonan Liu, Victor Crespo-Cuevas, Fay Salmon, Franck J Vernerey","doi":"10.1039/d4sm01278j","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a computational model designed to capture the mechanical behavior of entangled polymer networks, described by dynamic and slideable cross-linking junctions. The model adopts a network-level approach, where the polymer chains between junctions are represented by segments exhibiting entropic elasticity, and the sliding of chains through entanglements is governed by a frictional law. Additionally, the model incorporates stochastic processes for the creation and depletion of entanglement junctions, dynamically coupled with sliding mechanics. This framework enables the exploration of the time-dependent mechanical response of entangled polymers with and without covalent cross-links. We apply this model to study the nonlinear rheology of such networks, linking macroscopic stress-strain behavior to the underlying microscopic events within the network. The approach is computationally efficient, making it a useful tool for understanding how network design influences polymer performance in elasticity, rheology, and general mechanical features. This work provides valuable insights into the relationship between molecular-level interactions and the macroscopic properties of entangled polymer systems, with potential applications in the design and optimization of advanced polymer materials.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sm01278j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a computational model designed to capture the mechanical behavior of entangled polymer networks, described by dynamic and slideable cross-linking junctions. The model adopts a network-level approach, where the polymer chains between junctions are represented by segments exhibiting entropic elasticity, and the sliding of chains through entanglements is governed by a frictional law. Additionally, the model incorporates stochastic processes for the creation and depletion of entanglement junctions, dynamically coupled with sliding mechanics. This framework enables the exploration of the time-dependent mechanical response of entangled polymers with and without covalent cross-links. We apply this model to study the nonlinear rheology of such networks, linking macroscopic stress-strain behavior to the underlying microscopic events within the network. The approach is computationally efficient, making it a useful tool for understanding how network design influences polymer performance in elasticity, rheology, and general mechanical features. This work provides valuable insights into the relationship between molecular-level interactions and the macroscopic properties of entangled polymer systems, with potential applications in the design and optimization of advanced polymer materials.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.