Generation of Site-Specifically Labeled Affinity Reagents via Use of a Self-Labeling Single Domain Antibody.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2025-02-18 DOI:10.1002/advs.202417160
Stanley Fayn, Swarnali Roy, Chino C Cabalteja, Woonghee Lee, Hima Makala, Kwamena Baidoo, Divya Nambiar, Julia Sheehan-Klenk, Joon-Yong Chung, Jesse Buffington, Mitchell Ho, Freddy E Escorcia, Ross W Cheloha
{"title":"Generation of Site-Specifically Labeled Affinity Reagents via Use of a Self-Labeling Single Domain Antibody.","authors":"Stanley Fayn, Swarnali Roy, Chino C Cabalteja, Woonghee Lee, Hima Makala, Kwamena Baidoo, Divya Nambiar, Julia Sheehan-Klenk, Joon-Yong Chung, Jesse Buffington, Mitchell Ho, Freddy E Escorcia, Ross W Cheloha","doi":"10.1002/advs.202417160","DOIUrl":null,"url":null,"abstract":"<p><p>Several chemical and enzymatic methods have been used to link antibodies to moieties that facilitate visualization of cognate targets. Emerging evidence suggests that the extent of labeling, dictated by the type of chemistry used, has a substantial impact on performance, especially in the context of antibodies used for the visualization of tumors in vivo. These effects are particularly pronounced in studies using small antibody fragments, such as single-domain antibodies, or nanobodies. Here, we leverage a new variety of conjugation chemistry, based on a nanobody that forms a crosslink with a specialized high-affinity epitope analogue, to label target-specific nanobody constructs with functionalities of choice, including fluorophores, chelators, and click chemistry handles. Using heterodimeric nanobody conjugates, comprised of an antigen recognition module and a self-labeling module, enables us to attach the desired functional group at a location distal to the site of antigen recognition. Constructs generated using this approach bound to antigens expressed on xenograft murine models of liver cancer and allowed for non-invasive diagnostic imaging. The modularity of our approach using a self-labeling nanobody offers a novel method for site-specific functionalization of biomolecules and can be extended to other applications for which covalent labeling is required.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2417160"},"PeriodicalIF":14.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202417160","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Several chemical and enzymatic methods have been used to link antibodies to moieties that facilitate visualization of cognate targets. Emerging evidence suggests that the extent of labeling, dictated by the type of chemistry used, has a substantial impact on performance, especially in the context of antibodies used for the visualization of tumors in vivo. These effects are particularly pronounced in studies using small antibody fragments, such as single-domain antibodies, or nanobodies. Here, we leverage a new variety of conjugation chemistry, based on a nanobody that forms a crosslink with a specialized high-affinity epitope analogue, to label target-specific nanobody constructs with functionalities of choice, including fluorophores, chelators, and click chemistry handles. Using heterodimeric nanobody conjugates, comprised of an antigen recognition module and a self-labeling module, enables us to attach the desired functional group at a location distal to the site of antigen recognition. Constructs generated using this approach bound to antigens expressed on xenograft murine models of liver cancer and allowed for non-invasive diagnostic imaging. The modularity of our approach using a self-labeling nanobody offers a novel method for site-specific functionalization of biomolecules and can be extended to other applications for which covalent labeling is required.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
Targeting USP1 Potentiates Radiation-Induced Type I IFN-Dependent Antitumor Immunity by Enhancing Oligo-Ubiquitinated SAR1A-Mediated STING Trafficking and Activation. T-Cell-Dependent Bispecific IgGs Protect Aged Mice From Lethal SARS-CoV-2 Infection. Tunable Hierarchically Porous Gadolinium-Based Metal-Organic Frameworks for Bacteria-Targeting Magnetic Resonance Imaging and In Situ Anti-Bacterial Therapy. Ultrabroadband Directional Tunable Thermal Emission Control Based on Vanadium Dioxide Photonic Structures. Ultrafast All-Optical Switching and Active Sub-Cycle Waveform Control via Time-Variant Photodoping of Terahertz Metasurfaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1