Distinct spatial N-glycan profiles reveal glioblastoma-specific signatures.

IF 5.6 2区 医学 Q1 ONCOLOGY The Journal of Pathology Pub Date : 2025-02-19 DOI:10.1002/path.6401
Aaron O Angerstein, Lyndsay E A Young, Thatchawan Thanasupawat, Jerry Vriend, Grace Grimsley, Xueqing Lun, Donna L Senger, Namita Sinha, Jason Beiko, Marshall Pitz, Sabine Hombach-Klonisch, Richard R Drake, Thomas Klonisch
{"title":"Distinct spatial N-glycan profiles reveal glioblastoma-specific signatures.","authors":"Aaron O Angerstein, Lyndsay E A Young, Thatchawan Thanasupawat, Jerry Vriend, Grace Grimsley, Xueqing Lun, Donna L Senger, Namita Sinha, Jason Beiko, Marshall Pitz, Sabine Hombach-Klonisch, Richard R Drake, Thomas Klonisch","doi":"10.1002/path.6401","DOIUrl":null,"url":null,"abstract":"<p><p>This study explored the complex interactions between glycosylation patterns, tumour biology, and therapeutic responses to temozolomide (TMZ) in human malignant glioma, specifically CNS WHO grade 3 oligodendroglioma (ODG) and glioblastoma (GB). Using spatial imaging of N-glycans in formalin-fixed paraffin-embedded (FFPE) tissue sections via MALDI-MSI, we analysed the N-glycome in primary and recurrent GB tissues and orthotopic xenografts of patient-derived brain tumour-initiating cells (BTIC) sensitive or resistant to TMZ. We identified unique N-glycosylation profiles, with nontumor brain (NTB) and ODG showing higher levels of bisecting and tri-antennary structures, while GB exhibited more tetra-antennary and sialylated N-glycans. Distinctive sialylation patterns were observed, with specific α2,6 and α2,3 isomeric linkages significantly altered in GB. Moreover, comparative analysis of primary and recurrent GB tissues revealed elevated high mannose N-glycans in primary GB and fucosylated bi- and tri-antennary N-glycans in recurrent GB tissues. Next, in the orthotopic xenografts of TMZ-sensitive and TMZ-resistant patient brain tumour initiating cells (BTIC), we identified potential N-glycan markers for TMZ treatment response and resistance. Finally, we found significantly altered expression of genes involved in N-glycan biosynthesis in malignant glioma, highlighting the crucial role of N-glycans in glioma and therapy resistance. This study lays the foundation for developing glycosylation-based diagnostic biomarkers and targeted therapies, potentially improving clinical outcomes for GB patients. © 2025 The Pathological Society of Great Britain and Ireland.</p>","PeriodicalId":232,"journal":{"name":"The Journal of Pathology","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/path.6401","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study explored the complex interactions between glycosylation patterns, tumour biology, and therapeutic responses to temozolomide (TMZ) in human malignant glioma, specifically CNS WHO grade 3 oligodendroglioma (ODG) and glioblastoma (GB). Using spatial imaging of N-glycans in formalin-fixed paraffin-embedded (FFPE) tissue sections via MALDI-MSI, we analysed the N-glycome in primary and recurrent GB tissues and orthotopic xenografts of patient-derived brain tumour-initiating cells (BTIC) sensitive or resistant to TMZ. We identified unique N-glycosylation profiles, with nontumor brain (NTB) and ODG showing higher levels of bisecting and tri-antennary structures, while GB exhibited more tetra-antennary and sialylated N-glycans. Distinctive sialylation patterns were observed, with specific α2,6 and α2,3 isomeric linkages significantly altered in GB. Moreover, comparative analysis of primary and recurrent GB tissues revealed elevated high mannose N-glycans in primary GB and fucosylated bi- and tri-antennary N-glycans in recurrent GB tissues. Next, in the orthotopic xenografts of TMZ-sensitive and TMZ-resistant patient brain tumour initiating cells (BTIC), we identified potential N-glycan markers for TMZ treatment response and resistance. Finally, we found significantly altered expression of genes involved in N-glycan biosynthesis in malignant glioma, highlighting the crucial role of N-glycans in glioma and therapy resistance. This study lays the foundation for developing glycosylation-based diagnostic biomarkers and targeted therapies, potentially improving clinical outcomes for GB patients. © 2025 The Pathological Society of Great Britain and Ireland.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Pathology
The Journal of Pathology 医学-病理学
CiteScore
14.10
自引率
1.40%
发文量
144
审稿时长
3-8 weeks
期刊介绍: The Journal of Pathology aims to serve as a translational bridge between basic biomedical science and clinical medicine with particular emphasis on, but not restricted to, tissue based studies. The main interests of the Journal lie in publishing studies that further our understanding the pathophysiological and pathogenetic mechanisms of human disease. The Journal of Pathology welcomes investigative studies on human tissues, in vitro and in vivo experimental studies, and investigations based on animal models with a clear relevance to human disease, including transgenic systems. As well as original research papers, the Journal seeks to provide rapid publication in a variety of other formats, including editorials, review articles, commentaries and perspectives and other features, both contributed and solicited.
期刊最新文献
Distinct spatial N-glycan profiles reveal glioblastoma-specific signatures. A deep-learning model for predicting tyrosine kinase inhibitor response from histology in gastrointestinal stromal tumor. Redefining phenotypic intratumor heterogeneity of pancreatic ductal adenocarcinoma: a bottom-up approach. Comprehensive characterization of micropapillary colorectal adenocarcinoma. Clonal dynamics of chronic myelomonocytic leukemia progression: paired-sample comparison.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1