Life-threatening fentanyl overdose beyond medullary depression in breathing.

IF 2.2 3区 医学 Q3 PHYSIOLOGY American journal of physiology. Regulatory, integrative and comparative physiology Pub Date : 2025-03-01 Epub Date: 2025-02-18 DOI:10.1152/ajpregu.00238.2024
Annick Judenherc-Haouzi, Tristan Lewis, Amanda Reinhardt, Philippe Haouzi
{"title":"Life-threatening fentanyl overdose beyond medullary depression in breathing.","authors":"Annick Judenherc-Haouzi, Tristan Lewis, Amanda Reinhardt, Philippe Haouzi","doi":"10.1152/ajpregu.00238.2024","DOIUrl":null,"url":null,"abstract":"<p><p>We sought to determine how the balance between O<sub>2</sub> delivery (Do<sub>2</sub>) and O<sub>2</sub> consumption is altered by fentanyl during the initial and the most critical period following a bolus intravenous injection of high-dose fentanyl. We determined the acute changes in ventilation, gas exchange, and hemodynamic-including cardiac function-along with the acid-base and arterial blood gas status-in 27 unsedated rats, following an intravenous bolus injection of 150 µg/kg fentanyl. This injection produced an immediate coma and central apnea, followed by the emergence of a regular and sustained, yet very depressed, breathing pattern ∼2.5 min later. All rats displayed an instantaneous and profound decrease in Q̇c (from 295.7 ± 42.62 to 140.74 ± 74.96 mL/kg/min; <i>P</i> < 0.0001) resulting from abrupt bradycardia (from 333.3 ± 20.8 to 112.2 ± 36.4 beats/min; <i>P</i> < 0.05) with a transient decreased cardiac contractility, associated with very severe hypoxemia that persisted throughout the ensuing period of hypoventilation, for example, [Formula: see text] = 39.0 ± 18.4 mmHg; [Formula: see text] = 50.1 ± 26.2%, at 5 min. Do<sub>2</sub> was therefore immediately decreased by several folds; and the abrupt decrease in Q̇c was even more severe than the drop in oxygenation. Twenty-four rats survived; the three remaining animals presented a rapid cardiac arrest by pulseless electrical activity. Fentanyl overdose induces an instant decrease in Do<sub>2</sub>, with a very early and predominant drop in Q̇c, out of proportion with the decrease in V̇o<sub>2</sub>, a protective mechanism produced by hypoxemia. The relevance and translation of these findings to human hypoxic cardiac arrest are discussed.<b>NEW & NOTEWORTHY</b> Fentanyl overdose induces an instant decrease in arterial transport of O<sub>2</sub>, with a very early drop in cardiac output, out of proportion of O<sub>2</sub> requirement. These results point to the prominent role of the cardiac (through bradycardia) and circulatory effects of fentanyl as major contributors to the lethality of a fentanyl overdose when apnea and hypoventilation-induced hypoxemia develop.</p>","PeriodicalId":7630,"journal":{"name":"American journal of physiology. Regulatory, integrative and comparative physiology","volume":" ","pages":"R408-R421"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Regulatory, integrative and comparative physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpregu.00238.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We sought to determine how the balance between O2 delivery (Do2) and O2 consumption is altered by fentanyl during the initial and the most critical period following a bolus intravenous injection of high-dose fentanyl. We determined the acute changes in ventilation, gas exchange, and hemodynamic-including cardiac function-along with the acid-base and arterial blood gas status-in 27 unsedated rats, following an intravenous bolus injection of 150 µg/kg fentanyl. This injection produced an immediate coma and central apnea, followed by the emergence of a regular and sustained, yet very depressed, breathing pattern ∼2.5 min later. All rats displayed an instantaneous and profound decrease in Q̇c (from 295.7 ± 42.62 to 140.74 ± 74.96 mL/kg/min; P < 0.0001) resulting from abrupt bradycardia (from 333.3 ± 20.8 to 112.2 ± 36.4 beats/min; P < 0.05) with a transient decreased cardiac contractility, associated with very severe hypoxemia that persisted throughout the ensuing period of hypoventilation, for example, [Formula: see text] = 39.0 ± 18.4 mmHg; [Formula: see text] = 50.1 ± 26.2%, at 5 min. Do2 was therefore immediately decreased by several folds; and the abrupt decrease in Q̇c was even more severe than the drop in oxygenation. Twenty-four rats survived; the three remaining animals presented a rapid cardiac arrest by pulseless electrical activity. Fentanyl overdose induces an instant decrease in Do2, with a very early and predominant drop in Q̇c, out of proportion with the decrease in V̇o2, a protective mechanism produced by hypoxemia. The relevance and translation of these findings to human hypoxic cardiac arrest are discussed.NEW & NOTEWORTHY Fentanyl overdose induces an instant decrease in arterial transport of O2, with a very early drop in cardiac output, out of proportion of O2 requirement. These results point to the prominent role of the cardiac (through bradycardia) and circulatory effects of fentanyl as major contributors to the lethality of a fentanyl overdose when apnea and hypoventilation-induced hypoxemia develop.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.30
自引率
3.60%
发文量
145
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology publishes original investigations that illuminate normal or abnormal regulation and integration of physiological mechanisms at all levels of biological organization, ranging from molecules to humans, including clinical investigations. Major areas of emphasis include regulation in genetically modified animals; model organisms; development and tissue plasticity; neurohumoral control of circulation and hypertension; local control of circulation; cardiac and renal integration; thirst and volume, electrolyte homeostasis; glucose homeostasis and energy balance; appetite and obesity; inflammation and cytokines; integrative physiology of pregnancy-parturition-lactation; and thermoregulation and adaptations to exercise and environmental stress.
期刊最新文献
Identification and analysis of amino acid metabolism-related subtypes in lung adenocarcinoma. Impact of successive sets of high-intensity leg press on cerebral hemodynamics across menstrual cycle phases. Knockdown of the type 1 cannabinoid receptor in the central amygdala increases both spontaneous and water deprivation-induced sodium intake in rats. Heat-producing thermoeffector plasticity in response to prolonged iterative exposure to a high-heat loss environment: no indication of thermoregulatory fatigue. Exercise pressor reflex function is augmented in rats with chronic kidney disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1