{"title":"Cascade Lanthanide-Triplet Energy Transfer for Nanocrystal-Sensitized Organic Photon Upconversion.","authors":"Zhijie Ju, Renren Deng","doi":"10.1002/anie.202422575","DOIUrl":null,"url":null,"abstract":"<p><p>Sensitized organic photon upconversion via triplet-triplet annihilation (TTA) shows significant potential for energy conversion and photocatalysis, but achieving efficient upconversion across multiple wavelengths with single-wavelength near-infrared (NIR) excitation remains a daunting challenge. Here, we report a strategy utilizing lanthanide-doped nanocrystals (LnNCs) to sensitize TTA upconversion in multiple organic emitters under NIR excitation, achieving an anti-Stokes shift of up to 1.1 eV. This approach leverages a cascade lanthanide-triplet energy transfer design, adopting an interfacial energy transfer pathway via lanthanide ions to surface energy relay molecules for extended triplet sensitization. It allows consecutive transfer of photon energy from LnNCs to TTA emitters, mitigating energy mismatch between the triplet levels of emitters and excitation photon energies. The use of LnNCs enhances energy transfer efficiency through the unique spin-orbital coupling and narrow-band absorption properties of lanthanide ions. Our approach offers tunable upconversion emission, minimized energy loss during sensitization, and improved chemical stability of LnNCs. Additionally, we demonstrate the utility of this system in NIR-induced photopolymerization, showcasing its potential for applications such as 3D printing and photocatalysis.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":" ","pages":"e202422575"},"PeriodicalIF":16.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202422575","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sensitized organic photon upconversion via triplet-triplet annihilation (TTA) shows significant potential for energy conversion and photocatalysis, but achieving efficient upconversion across multiple wavelengths with single-wavelength near-infrared (NIR) excitation remains a daunting challenge. Here, we report a strategy utilizing lanthanide-doped nanocrystals (LnNCs) to sensitize TTA upconversion in multiple organic emitters under NIR excitation, achieving an anti-Stokes shift of up to 1.1 eV. This approach leverages a cascade lanthanide-triplet energy transfer design, adopting an interfacial energy transfer pathway via lanthanide ions to surface energy relay molecules for extended triplet sensitization. It allows consecutive transfer of photon energy from LnNCs to TTA emitters, mitigating energy mismatch between the triplet levels of emitters and excitation photon energies. The use of LnNCs enhances energy transfer efficiency through the unique spin-orbital coupling and narrow-band absorption properties of lanthanide ions. Our approach offers tunable upconversion emission, minimized energy loss during sensitization, and improved chemical stability of LnNCs. Additionally, we demonstrate the utility of this system in NIR-induced photopolymerization, showcasing its potential for applications such as 3D printing and photocatalysis.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.