Mitochondria-Targeted Temozolomide Probe for Overcoming MGMT-Mediated Resistance in Glioblastoma.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY ChemBioChem Pub Date : 2025-02-19 DOI:10.1002/cbic.202400935
Daniel Szames, Shana Kelley
{"title":"Mitochondria-Targeted Temozolomide Probe for Overcoming MGMT-Mediated Resistance in Glioblastoma.","authors":"Daniel Szames, Shana Kelley","doi":"10.1002/cbic.202400935","DOIUrl":null,"url":null,"abstract":"<p><p>Temozolomide (Tmz) is a DNA methylating agent used for the treatment of glioblastoma multiforme (GBM). Resistance to Tmz in GBM is caused by the DNA direct repair enzyme O6-methylguanine DNA methyltransferase (MGMT), which is expressed in ~50% of GBM tumours. It has yet to be confirmed that MGMT acts within mitochondria to repair mitochondrial DNA (mtDNA), and in this report we discuss the development of a novel mitochondria-targeted temozolomide probe (mtTmz) for evading MGMT-mediated resistance. Through conjugation of Tmz to a mitochondria-penetrating peptide (MPP), exclusive mitochondrial localization was achieved, and the probe retained alkylation activity demonstrated by chemical and DNA-based assays. Absence of nuclear DNA damage was assessed by detecting γH2AX foci. mtTmz demonstrated efficient cell killing capabilities independent of MGMT status in GBM cells as determined by cell viability assays. It was determined using a Proteinase K digestion assay that MGMT does not translocate to mitochondria in response to mtTmz treatment, and RT-qPCR analysis demonstrated that mtTmz does not induce MGMT gene expression compared to Tmz. The results reported highlight both the potential of mitochondrial targeting of Tmz and mitochondria as a therapeutic target in MGMT-expressing GBM.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e202400935"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202400935","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Temozolomide (Tmz) is a DNA methylating agent used for the treatment of glioblastoma multiforme (GBM). Resistance to Tmz in GBM is caused by the DNA direct repair enzyme O6-methylguanine DNA methyltransferase (MGMT), which is expressed in ~50% of GBM tumours. It has yet to be confirmed that MGMT acts within mitochondria to repair mitochondrial DNA (mtDNA), and in this report we discuss the development of a novel mitochondria-targeted temozolomide probe (mtTmz) for evading MGMT-mediated resistance. Through conjugation of Tmz to a mitochondria-penetrating peptide (MPP), exclusive mitochondrial localization was achieved, and the probe retained alkylation activity demonstrated by chemical and DNA-based assays. Absence of nuclear DNA damage was assessed by detecting γH2AX foci. mtTmz demonstrated efficient cell killing capabilities independent of MGMT status in GBM cells as determined by cell viability assays. It was determined using a Proteinase K digestion assay that MGMT does not translocate to mitochondria in response to mtTmz treatment, and RT-qPCR analysis demonstrated that mtTmz does not induce MGMT gene expression compared to Tmz. The results reported highlight both the potential of mitochondrial targeting of Tmz and mitochondria as a therapeutic target in MGMT-expressing GBM.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemBioChem
ChemBioChem 生物-生化与分子生物学
CiteScore
6.10
自引率
3.10%
发文量
407
审稿时长
1 months
期刊介绍: ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).
期刊最新文献
Interactive 3D Objects Enhance Scientific Communication of Structural Data. Mitochondria-Targeted Temozolomide Probe for Overcoming MGMT-Mediated Resistance in Glioblastoma. Small Molecule Fluorescent Probes for Glutathione S-Transferase. Conjugation of Human N-Glycans Improves the Drug Properties of Existing Peptides and Proteins. Wireframe DNA Origami Capable of Vertex-protruding Transformation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1