NiCo2S4 Nanotube Decorated on Tea-Waste Derived Porous Carbon: A Dual-Purpose Nanocomposite for High-Performance Flexible Asymmetric Supercapacitor and Oxygen Evolution Reaction.
{"title":"NiCo2S4 Nanotube Decorated on Tea-Waste Derived Porous Carbon: A Dual-Purpose Nanocomposite for High-Performance Flexible Asymmetric Supercapacitor and Oxygen Evolution Reaction.","authors":"Rajeshvari Samatbhai Karmur, Debika Gogoi, Manash R Das, Narendra Nath Ghosh","doi":"10.1002/asia.202401711","DOIUrl":null,"url":null,"abstract":"<p><p>Water splitting is one of the cleanest ways to produce H2, considered a reliable, next-generation fuel, and supercapacitors are one of the most efficient energy devices for myriad technologies. Herein, we designed and synthesized NiCo2S4 nanotubes-porous carbon (NCS-PCTW) nanocomposite. Porous carbon was synthesized from abundant and cheap tea leaf waste (i.e., tea leaves obtained after brewing). The performances of NCS-PCTW nanocomposite have been assessed for two applications: (i) as an active cathode material in an all-solid-state flexible asymmetric supercapacitor (ASC) device and (ii) as an electrocatalyst for oxygen evolution reaction (OER). The asymmetric supercapacitor NCS-PCTW//PCTW device exhibited its high performance, such as a specific capacitance of 188.75 F g-1 at 1 A g-1, a high energy density of 72.4 W h kg-1 at a power density of 863 W kg-1, and a long cyclic stability. NCS-PCTW nanocomposite also demonstrated its excellent efficiency as an electrocatalyst for OER with a low onset potential of 1.48 V, low overpotential of 267 mV at 10 mA cm-2, a Tafel slope of 82.53 mV dec-1, and stability till 20 h at 50 mA cm-2. This work illustrates the great potential of NiCo2S4-porous carbon nanocomposite in clean energy generation and efficient energy storage technologies.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401711"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401711","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Water splitting is one of the cleanest ways to produce H2, considered a reliable, next-generation fuel, and supercapacitors are one of the most efficient energy devices for myriad technologies. Herein, we designed and synthesized NiCo2S4 nanotubes-porous carbon (NCS-PCTW) nanocomposite. Porous carbon was synthesized from abundant and cheap tea leaf waste (i.e., tea leaves obtained after brewing). The performances of NCS-PCTW nanocomposite have been assessed for two applications: (i) as an active cathode material in an all-solid-state flexible asymmetric supercapacitor (ASC) device and (ii) as an electrocatalyst for oxygen evolution reaction (OER). The asymmetric supercapacitor NCS-PCTW//PCTW device exhibited its high performance, such as a specific capacitance of 188.75 F g-1 at 1 A g-1, a high energy density of 72.4 W h kg-1 at a power density of 863 W kg-1, and a long cyclic stability. NCS-PCTW nanocomposite also demonstrated its excellent efficiency as an electrocatalyst for OER with a low onset potential of 1.48 V, low overpotential of 267 mV at 10 mA cm-2, a Tafel slope of 82.53 mV dec-1, and stability till 20 h at 50 mA cm-2. This work illustrates the great potential of NiCo2S4-porous carbon nanocomposite in clean energy generation and efficient energy storage technologies.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).