Predicting mother and newborn skin-to-skin contact using a machine learning approach.

IF 2.8 2区 医学 Q1 OBSTETRICS & GYNECOLOGY BMC Pregnancy and Childbirth Pub Date : 2025-02-18 DOI:10.1186/s12884-025-07313-9
Sanaz Safarzadeh, Nastaran Safavi Ardabili, Mohammadsadegh Vahidi Farashah, Nasibeh Roozbeh, Fatemeh Darsareh
{"title":"Predicting mother and newborn skin-to-skin contact using a machine learning approach.","authors":"Sanaz Safarzadeh, Nastaran Safavi Ardabili, Mohammadsadegh Vahidi Farashah, Nasibeh Roozbeh, Fatemeh Darsareh","doi":"10.1186/s12884-025-07313-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Despite the known benefits of skin-to-skin contact (SSC), limited data exists on its implementation, especially its influencing factors. The current study was designed to use machine learning (ML) to identify the predictors of SSC.</p><p><strong>Methods: </strong>This study implemented predictive SSC approaches based on the data obtained from the \"Iranian Maternal and Neonatal Network (IMaN Net)\" from January 2020 to January 2022. A predictive model was built using nine statistical learning models (linear regression, logistic regression, decision tree classification, random forest classification, deep learning feedforward, extreme gradient boost model, light gradient boost model, support vector machine, and permutation feature classification with k-nearest neighbors). Demographic, obstetric, and maternal and neonatal clinical factors were considered as potential predicting factors and were extracted from the patient's medical records. The area under the receiver operating characteristic curve (AUROC), accuracy, precision, recall, and F_1 Score were measured to evaluate the diagnostic performance.</p><p><strong>Results: </strong>Of 8031 eligible mothers, 3759 (46.8%) experienced SSC. The algorithms created by deep learning (AUROC: 0.81, accuracy: 0.75, precision: 0.67, recall: 0.77, and F_1 Score: 0.73) and linear regression (AUROC: 0.80, accuracy: 0.75, precision: 0.66, recall: 0.75, and F_1 Score: 0.71) had the highest performance in predicting SSC. Doula support, neonatal weight, gestational age, attending childbirth classes, and maternal age were the critical predictors for SSC based on the top two algorithms with superior performance.</p><p><strong>Conclusions: </strong>Although this study found that the ML model performed well in predicting SSC, more research is needed to make a better conclusion about its performance.</p>","PeriodicalId":9033,"journal":{"name":"BMC Pregnancy and Childbirth","volume":"25 1","pages":"182"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837404/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Pregnancy and Childbirth","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12884-025-07313-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Despite the known benefits of skin-to-skin contact (SSC), limited data exists on its implementation, especially its influencing factors. The current study was designed to use machine learning (ML) to identify the predictors of SSC.

Methods: This study implemented predictive SSC approaches based on the data obtained from the "Iranian Maternal and Neonatal Network (IMaN Net)" from January 2020 to January 2022. A predictive model was built using nine statistical learning models (linear regression, logistic regression, decision tree classification, random forest classification, deep learning feedforward, extreme gradient boost model, light gradient boost model, support vector machine, and permutation feature classification with k-nearest neighbors). Demographic, obstetric, and maternal and neonatal clinical factors were considered as potential predicting factors and were extracted from the patient's medical records. The area under the receiver operating characteristic curve (AUROC), accuracy, precision, recall, and F_1 Score were measured to evaluate the diagnostic performance.

Results: Of 8031 eligible mothers, 3759 (46.8%) experienced SSC. The algorithms created by deep learning (AUROC: 0.81, accuracy: 0.75, precision: 0.67, recall: 0.77, and F_1 Score: 0.73) and linear regression (AUROC: 0.80, accuracy: 0.75, precision: 0.66, recall: 0.75, and F_1 Score: 0.71) had the highest performance in predicting SSC. Doula support, neonatal weight, gestational age, attending childbirth classes, and maternal age were the critical predictors for SSC based on the top two algorithms with superior performance.

Conclusions: Although this study found that the ML model performed well in predicting SSC, more research is needed to make a better conclusion about its performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Pregnancy and Childbirth
BMC Pregnancy and Childbirth OBSTETRICS & GYNECOLOGY-
CiteScore
4.90
自引率
6.50%
发文量
845
审稿时长
3-8 weeks
期刊介绍: BMC Pregnancy & Childbirth is an open access, peer-reviewed journal that considers articles on all aspects of pregnancy and childbirth. The journal welcomes submissions on the biomedical aspects of pregnancy, breastfeeding, labor, maternal health, maternity care, trends and sociological aspects of pregnancy and childbirth.
期刊最新文献
Temporal trends and associated factors in cesarean section use in the Philippines: an analysis of Demographic and Health Survey data from 1993 to 2017. Universal screening for hyperglycemia in early pregnancy and the risk of adverse pregnancy outcomes. A pathway study of factors influencing anxiety in patients with gestational diabetes mellitus. Commentary: Antenatal corticosteroid prophylaxis in late preterms- short- and long-term effects and many open questions. Comparison of the perinatal outcomes of live-born singletons between blastocysts and cleavage-stage embryo transfer in FET cycles via propensity score matching.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1