{"title":"Recent advances in the methods and clinical applications of next-generation sequencing in genomic profiling and precision cancer therapy.","authors":"Ahad Amer Alsaiari","doi":"10.17179/excli2024-7594","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer is a major cause of death worldwide. Next-generation sequencing (NGS) has dramatically increased the sequencing data output and transformed biomedical investigations. NGS enables the generations of genetic data specific to patients from tumor tissue samples so that targeted therapies can be used. The obtained data further allows the prioritization of effective therapies based on the tumor-specific genotype. Practitioners in the field of clinical genomics can make the best use of testing facilities while lessening the possible off-targets by choosing a priori gene set. Therefore, targeted sequencing has arisen as a more affordable technique for the genomic profiling of tumors. Drug resistance is commonly observed in cancer because of mutations. Thus, precise genetic and molecular profiling of tumors ought to be routinely done prior to the use of targeted therapy or precision cancer therapy. NGS already has the capacity to ameliorate genetic screening in families with previous histories of the high occurrence of various cancer-associated genes, including <i>TP53, APC, BRCA2,</i> and <i>BRCA1</i>. By using NGS system, researchers detected increased variants in cancer cells with greater specificity and sensitivity than conventional diagnostic approaches, which suggest the potential of NGS in diagnosis. The field of precision cancer therapy is continuously growing and because of their specificity at the molecular level has improved the management and treatment of numerous cancers. These therapies are less toxic and more efficient compared to conventional chemotherapies used in cancer treatment. The field of precision cancer therapy is likely to significantly expand as NGS system advances. This review provides extensive information regarding current advances in the NGS field in terms of methods, clinical applications, genomic profiling, and the role of NGS of precision cancer therapy.</p>","PeriodicalId":12247,"journal":{"name":"EXCLI Journal","volume":"24 ","pages":"15-33"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830917/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EXCLI Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.17179/excli2024-7594","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer is a major cause of death worldwide. Next-generation sequencing (NGS) has dramatically increased the sequencing data output and transformed biomedical investigations. NGS enables the generations of genetic data specific to patients from tumor tissue samples so that targeted therapies can be used. The obtained data further allows the prioritization of effective therapies based on the tumor-specific genotype. Practitioners in the field of clinical genomics can make the best use of testing facilities while lessening the possible off-targets by choosing a priori gene set. Therefore, targeted sequencing has arisen as a more affordable technique for the genomic profiling of tumors. Drug resistance is commonly observed in cancer because of mutations. Thus, precise genetic and molecular profiling of tumors ought to be routinely done prior to the use of targeted therapy or precision cancer therapy. NGS already has the capacity to ameliorate genetic screening in families with previous histories of the high occurrence of various cancer-associated genes, including TP53, APC, BRCA2, and BRCA1. By using NGS system, researchers detected increased variants in cancer cells with greater specificity and sensitivity than conventional diagnostic approaches, which suggest the potential of NGS in diagnosis. The field of precision cancer therapy is continuously growing and because of their specificity at the molecular level has improved the management and treatment of numerous cancers. These therapies are less toxic and more efficient compared to conventional chemotherapies used in cancer treatment. The field of precision cancer therapy is likely to significantly expand as NGS system advances. This review provides extensive information regarding current advances in the NGS field in terms of methods, clinical applications, genomic profiling, and the role of NGS of precision cancer therapy.
期刊介绍:
EXCLI Journal publishes original research reports, authoritative reviews and case reports of experimental and clinical sciences.
The journal is particularly keen to keep a broad view of science and technology, and therefore welcomes papers which bridge disciplines and may not suit the narrow specialism of other journals. Although the general emphasis is on biological sciences, studies from the following fields are explicitly encouraged (alphabetical order):
aging research, behavioral sciences, biochemistry, cell biology, chemistry including analytical chemistry, clinical and preclinical studies, drug development, environmental health, ergonomics, forensic medicine, genetics, hepatology and gastroenterology, immunology, neurosciences, occupational medicine, oncology and cancer research, pharmacology, proteomics, psychiatric research, psychology, systems biology, toxicology