{"title":"Repair mechanisms of bone system tissues based on comprehensive perspective of multi-omics.","authors":"Honghao Yu, Shize Yang, Tianlong Jiang, Tian Li, Hongmei Duan, Minglei Li","doi":"10.1007/s10565-025-09995-5","DOIUrl":null,"url":null,"abstract":"<p><p>Bone disorders affect more than half of the adult population worldwide who may have a poor quality of life and physical independence worldwide. Multi-omic techniques are increasingly adopted and applied to determine the molecular mechanisms of bone tissue repair, providing perspective towards personalized medical intervention. Data from genomics, epigenomics, transcriptomics, proteomics, glycomics, and lipidomics were combined to elucidate dynamic processes in bone repair. In this narrative review, the key role of genetic and epigenetic factors in regulating injured cellular responses is highlighted, and changes in RNA and protein expression during the healing phase, as well as glucolipid metabolism adaptation, are described in detail how the repair process is affected. In a word, the integration of multi-omic techniques in this review not only benefits the comprehensive identification of new biomarkers, but also facilitates the development of personalized treatment strategies of bone disorders to revolutionize regenerative medicine.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"41 1","pages":"45"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11836151/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology and Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10565-025-09995-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bone disorders affect more than half of the adult population worldwide who may have a poor quality of life and physical independence worldwide. Multi-omic techniques are increasingly adopted and applied to determine the molecular mechanisms of bone tissue repair, providing perspective towards personalized medical intervention. Data from genomics, epigenomics, transcriptomics, proteomics, glycomics, and lipidomics were combined to elucidate dynamic processes in bone repair. In this narrative review, the key role of genetic and epigenetic factors in regulating injured cellular responses is highlighted, and changes in RNA and protein expression during the healing phase, as well as glucolipid metabolism adaptation, are described in detail how the repair process is affected. In a word, the integration of multi-omic techniques in this review not only benefits the comprehensive identification of new biomarkers, but also facilitates the development of personalized treatment strategies of bone disorders to revolutionize regenerative medicine.
期刊介绍:
Cell Biology and Toxicology (CBT) is an international journal focused on clinical and translational research with an emphasis on molecular and cell biology, genetic and epigenetic heterogeneity, drug discovery and development, and molecular pharmacology and toxicology. CBT has a disease-specific scope prioritizing publications on gene and protein-based regulation, intracellular signaling pathway dysfunction, cell type-specific function, and systems in biomedicine in drug discovery and development. CBT publishes original articles with outstanding, innovative and significant findings, important reviews on recent research advances and issues of high current interest, opinion articles of leading edge science, and rapid communication or reports, on molecular mechanisms and therapies in diseases.