Epitope-focused vaccine immunogens design using tailored horseshoe-shaped scaffold.

IF 12.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Nanobiotechnology Pub Date : 2025-02-18 DOI:10.1186/s12951-025-03200-9
Fangxin Zhao, Yue Zhang, Zhiling Zhang, Zhengshan Chen, Xiaolin Wang, Shaoyan Wang, Ruihua Li, Yaohui Li, Zhang Zhang, Wanru Zheng, Yudong Wang, Zhe Zhang, Shipo Wu, Yilong Yang, Jun Zhang, Xiaodong Zai, Junjie Xu, Wei Chen
{"title":"Epitope-focused vaccine immunogens design using tailored horseshoe-shaped scaffold.","authors":"Fangxin Zhao, Yue Zhang, Zhiling Zhang, Zhengshan Chen, Xiaolin Wang, Shaoyan Wang, Ruihua Li, Yaohui Li, Zhang Zhang, Wanru Zheng, Yudong Wang, Zhe Zhang, Shipo Wu, Yilong Yang, Jun Zhang, Xiaodong Zai, Junjie Xu, Wei Chen","doi":"10.1186/s12951-025-03200-9","DOIUrl":null,"url":null,"abstract":"<p><p>The continuous emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants highlights the need to update coronavirus 2019 disease (COVID-19) vaccine components. Epitope-based vaccine designs targeting conserved and immunorecessive regions of SARS-CoV-2 are critically needed. Here, we report an engineered epitope-focused immunogen design based on a novel horseshoe-shaped natural protein scaffold, named ribonuclease inhibitor 1 (RNH1), that can multiply display of conserved neutralizing epitopes from SARS-CoV-2 S2 stem helix. The designed immunogen RNH1-S1139 demonstrates high binding affinity to S2-specific neutralizing antibodies and elicits robust epitope-targeted antibody responses either through homologous or heterologous vaccination regimens. RNH1-S1139 immune serum has been proven to have similar binding ability against SARS-CoV, SARS-CoV-2 and its variants, providing broad-spectrum protection as a membrane fusion inhibitor. Further studies showed that RNH1 has the potential to serve as a versatile scaffold that displays other helical epitopes from various antigens, including respiratory syncytial virus (RSV) F glycoprotein. Our proposed immunogen engineering strategy via tailored horseshoe-shape nano-scaffold supports the continued development of epitope-focused vaccines as part of a next-generation vaccine design.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"119"},"PeriodicalIF":12.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834273/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03200-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The continuous emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants highlights the need to update coronavirus 2019 disease (COVID-19) vaccine components. Epitope-based vaccine designs targeting conserved and immunorecessive regions of SARS-CoV-2 are critically needed. Here, we report an engineered epitope-focused immunogen design based on a novel horseshoe-shaped natural protein scaffold, named ribonuclease inhibitor 1 (RNH1), that can multiply display of conserved neutralizing epitopes from SARS-CoV-2 S2 stem helix. The designed immunogen RNH1-S1139 demonstrates high binding affinity to S2-specific neutralizing antibodies and elicits robust epitope-targeted antibody responses either through homologous or heterologous vaccination regimens. RNH1-S1139 immune serum has been proven to have similar binding ability against SARS-CoV, SARS-CoV-2 and its variants, providing broad-spectrum protection as a membrane fusion inhibitor. Further studies showed that RNH1 has the potential to serve as a versatile scaffold that displays other helical epitopes from various antigens, including respiratory syncytial virus (RSV) F glycoprotein. Our proposed immunogen engineering strategy via tailored horseshoe-shape nano-scaffold supports the continued development of epitope-focused vaccines as part of a next-generation vaccine design.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用定制的马蹄形支架设计表皮聚焦疫苗免疫原。
严重急性呼吸综合征冠状病毒-2 (SARS-CoV-2)变体的不断出现凸显了更新2019冠状病毒病(COVID-19)疫苗成分的必要性。目前迫切需要针对SARS-CoV-2保守区和免疫隐性区设计基于表位的疫苗。在这里,我们报道了一种基于新型马蹄形天然蛋白支架的工程表位聚焦免疫原设计,称为核糖核酸酶抑制剂1 (RNH1),它可以从SARS-CoV-2 S2茎螺旋中复制保守的中和表位。设计的免疫原RNH1-S1139显示出与s2特异性中和抗体的高结合亲和力,并通过同源或异源疫苗接种方案引发强大的表位靶向抗体反应。RNH1-S1139免疫血清已被证明对SARS-CoV、SARS-CoV-2及其变体具有类似的结合能力,可作为膜融合抑制剂提供广谱保护。进一步的研究表明,RNH1有潜力作为一个多功能支架,显示来自各种抗原的其他螺旋表位,包括呼吸道合胞病毒(RSV) F糖蛋白。我们提出的免疫原工程策略通过定制的马蹄形纳米支架支持表位聚焦疫苗的持续发展,作为下一代疫苗设计的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
索莱宝
TMB substrate
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
期刊最新文献
Piezoelectric scaffold with enhanced effect drives the healing of osteochondral defects through electromechanical-immune coupling. Nanotechnology for reproductive healthcare: a comprehensive review. Black phosphorus-based photothermal-responsive hydrogel enhanced osteoporotic bone injury regeneration by alleviating oxidative stress and remodeling bone homeostasis. A novel nanotherapeutic strategy: rescuing nucleus pulposus cells from fatty acid metabolic disorder and pyroptosis through ACOT13 by Chinese herbal formula nanoparticles. Zinc peroxide-copper bimetallic nanozyme with self-activated ROS and cuproptosis for superficial antifungal therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1