Dynamic functional adaptations during touch observation in autism: connectivity strength is linked to attitudes towards social touch and social responsiveness.
{"title":"Dynamic functional adaptations during touch observation in autism: connectivity strength is linked to attitudes towards social touch and social responsiveness.","authors":"Haemy Lee Masson","doi":"10.1186/s13229-025-00644-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Autistic adults experience differences in social interactions involving physical contact. Brain imaging studies suggest that these differences may be related to atypical brain responses to social-affective cues, affecting both the experience of receiving touch and observing it in others. However, it remains unclear whether these atypical responses are limited to specific brain regions or represent broader alterations in brain connectivity. The current study investigated how the functional network architecture is modulated during touch observation associated with autism and explored the extent to which changes in this architecture are associated with individual differences in social touch preferences and social responsiveness.</p><p><strong>Methods: </strong>By integrating generalized psychophysiological interaction (gPPI) analysis with independent component analysis (ICA), the current study analyzed existing fMRI datasets, in which 21 autistic and 21 non-autistic male adults viewed videos of social and nonsocial touch while undergoing MRI scans.</p><p><strong>Results: </strong>A gPPI analysis of regions of interest revealed that autistic adults exhibited increased connectivity between sensory and social brain regions. The strength of some of these connections was positively associated with a higher preference for social touch and greater social responsiveness, suggesting neural compensatory mechanisms that may help autistic adults better understand the meaning of touch. At the level of large-scale brain networks extracted using ICA, atypical connectivity was predominantly observed between the sensorimotor network and other networks involved in social-emotional processing. Increased connectivity was observed in the sensorimotor network during nonsocial touch, suggesting that embodied simulation, the process by which individuals internally simulate touch experience of others in this context, may be more engaged when observing human-object interactions than during human-to-human touch.</p><p><strong>Limitations: </strong>This study focused on a specific subgroup of 21 autistic male adults with minimal support needs. Future research would benefit from including a more diverse autistic sample.</p><p><strong>Conclusions: </strong>This study reveals atypical context-dependent modulation of functional brain architecture associated with autism during touch observation. Neural compensatory mechanisms in autistic individuals who enjoy social touch and show higher social responsiveness may function as adaptive social responses. However, these compensations may be limited to specific brain regions, rather than occurring at the level of large-scale brain networks.</p>","PeriodicalId":18733,"journal":{"name":"Molecular Autism","volume":"16 1","pages":"11"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Autism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13229-025-00644-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Autistic adults experience differences in social interactions involving physical contact. Brain imaging studies suggest that these differences may be related to atypical brain responses to social-affective cues, affecting both the experience of receiving touch and observing it in others. However, it remains unclear whether these atypical responses are limited to specific brain regions or represent broader alterations in brain connectivity. The current study investigated how the functional network architecture is modulated during touch observation associated with autism and explored the extent to which changes in this architecture are associated with individual differences in social touch preferences and social responsiveness.
Methods: By integrating generalized psychophysiological interaction (gPPI) analysis with independent component analysis (ICA), the current study analyzed existing fMRI datasets, in which 21 autistic and 21 non-autistic male adults viewed videos of social and nonsocial touch while undergoing MRI scans.
Results: A gPPI analysis of regions of interest revealed that autistic adults exhibited increased connectivity between sensory and social brain regions. The strength of some of these connections was positively associated with a higher preference for social touch and greater social responsiveness, suggesting neural compensatory mechanisms that may help autistic adults better understand the meaning of touch. At the level of large-scale brain networks extracted using ICA, atypical connectivity was predominantly observed between the sensorimotor network and other networks involved in social-emotional processing. Increased connectivity was observed in the sensorimotor network during nonsocial touch, suggesting that embodied simulation, the process by which individuals internally simulate touch experience of others in this context, may be more engaged when observing human-object interactions than during human-to-human touch.
Limitations: This study focused on a specific subgroup of 21 autistic male adults with minimal support needs. Future research would benefit from including a more diverse autistic sample.
Conclusions: This study reveals atypical context-dependent modulation of functional brain architecture associated with autism during touch observation. Neural compensatory mechanisms in autistic individuals who enjoy social touch and show higher social responsiveness may function as adaptive social responses. However, these compensations may be limited to specific brain regions, rather than occurring at the level of large-scale brain networks.
期刊介绍:
Molecular Autism is a peer-reviewed, open access journal that publishes high-quality basic, translational and clinical research that has relevance to the etiology, pathobiology, or treatment of autism and related neurodevelopmental conditions. Research that includes integration across levels is encouraged. Molecular Autism publishes empirical studies, reviews, and brief communications.