REG3A secreted by peritumoral acinar cells enhances pancreatic ductal adenocarcinoma progression via activation of EGFR signaling.

IF 8.2 2区 生物学 Q1 CELL BIOLOGY Cell Communication and Signaling Pub Date : 2025-02-18 DOI:10.1186/s12964-025-02103-4
Xiaojing Ren, Yunfei Teng, Kunxin Xie, Xiao He, Gang Chen, Kaini Zhang, Qingyi Liao, Jia Zhang, Xiaohang Zhou, Yating Zhu, Wenyu Song, Yuege Lin, Yi Zhang, Zhijian Xu, Noriaki Maeshige, Xiubin Liang, Dongming Su, Peng Sun, Ying Ding
{"title":"REG3A secreted by peritumoral acinar cells enhances pancreatic ductal adenocarcinoma progression via activation of EGFR signaling.","authors":"Xiaojing Ren, Yunfei Teng, Kunxin Xie, Xiao He, Gang Chen, Kaini Zhang, Qingyi Liao, Jia Zhang, Xiaohang Zhou, Yating Zhu, Wenyu Song, Yuege Lin, Yi Zhang, Zhijian Xu, Noriaki Maeshige, Xiubin Liang, Dongming Su, Peng Sun, Ying Ding","doi":"10.1186/s12964-025-02103-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Regenerating family member 3A (REG3A) is involved in the development of multiple malignant tumors, including pancreatic ductal adenocarcinoma (PDAC). However, any role of REG3A in PDAC remains controversial due to its unclear tissue localization or direct receptors, and complex downstream signal transductions.</p><p><strong>Methods: </strong>Morphological analysis and public multi-omics data retrieval were was utilized to elucidate the tissue localization of REG3A in PDAC. To ascertain the pro-oncogenic role of secreted REG3A, experiments were conducted using in vitro PDAC cell lines and in vivo tumor formation assays in nude mice. A battery of investigative techniques, including RNA sequencing, phospho-kinase arrays, western blot analyses, in silico docking simulations, gene truncation strategies, and co-immunoprecipitation, were employed to delve into the downstream signaling transduction pathways induced by REG3A.</p><p><strong>Results: </strong>In this study, we confirmed an association between increased serum levels of REG3A and poor prognosis in patients with PDAC. Morphological staining and bioinformatic analysis showed that REG3A was mainly expressed in peritumoral acinar cells that were spatially close to tumor region, while it was almost negative in PDAC tumor cells. Peritumoral REG3A expression levels, but not tumoral REG3A, were highly correlated with PDAC progression. Further in vitro experiments including RNA sequencing and molecular biological assays revealed that secreted REG3A could directly bind to the epidermal growth factor receptor (EGFR), an important pro-oncogene involved in cellular proliferation, and subsequently activate the downstream mitogen-activated protein kinase (MAPK) signals to promote PDAC tumor cell growth.</p><p><strong>Conclusion: </strong>Taken together, our data indicated that increased expression of REG3A in peritumoral acinar cells acts as a specific event to indicate PDAC progression, and verified EGFR as a possible target of REG3A, providing mechanistic insights into the role of REG3A, the diagnostic method and therapeutic strategy of PDAC.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"96"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-025-02103-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Regenerating family member 3A (REG3A) is involved in the development of multiple malignant tumors, including pancreatic ductal adenocarcinoma (PDAC). However, any role of REG3A in PDAC remains controversial due to its unclear tissue localization or direct receptors, and complex downstream signal transductions.

Methods: Morphological analysis and public multi-omics data retrieval were was utilized to elucidate the tissue localization of REG3A in PDAC. To ascertain the pro-oncogenic role of secreted REG3A, experiments were conducted using in vitro PDAC cell lines and in vivo tumor formation assays in nude mice. A battery of investigative techniques, including RNA sequencing, phospho-kinase arrays, western blot analyses, in silico docking simulations, gene truncation strategies, and co-immunoprecipitation, were employed to delve into the downstream signaling transduction pathways induced by REG3A.

Results: In this study, we confirmed an association between increased serum levels of REG3A and poor prognosis in patients with PDAC. Morphological staining and bioinformatic analysis showed that REG3A was mainly expressed in peritumoral acinar cells that were spatially close to tumor region, while it was almost negative in PDAC tumor cells. Peritumoral REG3A expression levels, but not tumoral REG3A, were highly correlated with PDAC progression. Further in vitro experiments including RNA sequencing and molecular biological assays revealed that secreted REG3A could directly bind to the epidermal growth factor receptor (EGFR), an important pro-oncogene involved in cellular proliferation, and subsequently activate the downstream mitogen-activated protein kinase (MAPK) signals to promote PDAC tumor cell growth.

Conclusion: Taken together, our data indicated that increased expression of REG3A in peritumoral acinar cells acts as a specific event to indicate PDAC progression, and verified EGFR as a possible target of REG3A, providing mechanistic insights into the role of REG3A, the diagnostic method and therapeutic strategy of PDAC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.00
自引率
0.00%
发文量
180
期刊介绍: Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior. Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.
期刊最新文献
Cullin-RING ligase BioE3 reveals molecular-glue-induced neosubstrates and rewiring of the endogenous Cereblon ubiquitome. Endothelial-mesenchymal crosstalk drives osteogenic differentiation of human osteoblasts through Notch signaling. Intrinsic STING of CD8 + T cells regulates self-metabolic reprogramming and memory to exert anti-tumor effects. Functions of the Muscleblind-like protein family and their role in disease. REG3A secreted by peritumoral acinar cells enhances pancreatic ductal adenocarcinoma progression via activation of EGFR signaling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1