Mitochondrial control of ciliary gene expression and structure in striatal neurons.

IF 4.7 2区 医学 Q1 NEUROSCIENCES Journal of Physiology-London Pub Date : 2025-02-18 DOI:10.1113/JP287948
Dogukan H Ulgen, Alessandro Chioino, Olivia Zanoletti, Albert Quintana, Elisenda Sanz, Carmen Sandi
{"title":"Mitochondrial control of ciliary gene expression and structure in striatal neurons.","authors":"Dogukan H Ulgen, Alessandro Chioino, Olivia Zanoletti, Albert Quintana, Elisenda Sanz, Carmen Sandi","doi":"10.1113/JP287948","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria play essential metabolic roles and are increasingly understood to interact with other organelles, influencing cellular function and disease. Primary cilia, as sensory and signalling organelles, are crucial for neuronal communication and function. Emerging evidence suggests that mitochondria and primary cilia may interact to regulate cellular processes, as recently shown in brain cells such as astrocytes. Here, we investigated whether mitochondria also regulate primary cilia in neurons, focusing on molecular pathways linking both organelles and structural components within cilia. We employed a cross-species, molecular pathway-focused approach to explore connections between mitochondrial and ciliary pathways in neurons, revealing strong associations suggesting coordinated functionality. Furthermore, we found that viral-induced downregulation of the mitochondrial fusion gene mitofusin 2 (Mfn2) in dopamine D1 receptor-expressing medium spiny neurons (D1-MSNs) of the nucleus accumbens (NAc) altered ciliary gene expression, with Crocc - the gene encoding rootletin - showing the most pronounced downregulation. This reduction in Crocc expression was linked to decreased levels of rootletin protein, a key structural component of the ciliary rootlet. Notably, viral-mediated overexpression of rootletin restored ciliary complexity and elongation, without compromising neuronal adaptation to Mfn2 downregulation. Our findings provide novel evidence of a functional mitochondria-cilia interaction in neurons, specifically in striatal D1-MSNs. These results reveal a previously unrecognized role of mitochondrial dynamics in regulating ciliary structure in neurons, with potential implications for neuropsychiatric and neurodegenerative disease mechanisms. KEY POINTS: Mitochondria are cell structures known for producing energy but are also emerging as regulators of other cellular components, including primary cilia, antenna-like structures involved in cell communication. Previous studies suggest that mitochondria may influence cilia structure and function, including in astrocytes. However, this has not been explored in neurons. This study shows that natural variation in mitochondrial molecular pathways correlates with primary cilia pathways in striatal medium spiny neurons in both rats and mice. Reducing expression of mitofusin 2 (Mfn2), a key mitochondrial protein involved in fusion and mitochondria-endoplasmic reticulum interactions, changes specific molecular ciliary pathways, notably including Crocc, a gene essential for cilia structure, and reduces the levels of its protein product, rootletin, which supports cilia integrity. Our findings reveal an important role for mitochondria in regulating ciliary structure in neurons, highlighting a potential pathway for mitochondrial regulation of neuronal signalling.</p>","PeriodicalId":50088,"journal":{"name":"Journal of Physiology-London","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology-London","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/JP287948","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondria play essential metabolic roles and are increasingly understood to interact with other organelles, influencing cellular function and disease. Primary cilia, as sensory and signalling organelles, are crucial for neuronal communication and function. Emerging evidence suggests that mitochondria and primary cilia may interact to regulate cellular processes, as recently shown in brain cells such as astrocytes. Here, we investigated whether mitochondria also regulate primary cilia in neurons, focusing on molecular pathways linking both organelles and structural components within cilia. We employed a cross-species, molecular pathway-focused approach to explore connections between mitochondrial and ciliary pathways in neurons, revealing strong associations suggesting coordinated functionality. Furthermore, we found that viral-induced downregulation of the mitochondrial fusion gene mitofusin 2 (Mfn2) in dopamine D1 receptor-expressing medium spiny neurons (D1-MSNs) of the nucleus accumbens (NAc) altered ciliary gene expression, with Crocc - the gene encoding rootletin - showing the most pronounced downregulation. This reduction in Crocc expression was linked to decreased levels of rootletin protein, a key structural component of the ciliary rootlet. Notably, viral-mediated overexpression of rootletin restored ciliary complexity and elongation, without compromising neuronal adaptation to Mfn2 downregulation. Our findings provide novel evidence of a functional mitochondria-cilia interaction in neurons, specifically in striatal D1-MSNs. These results reveal a previously unrecognized role of mitochondrial dynamics in regulating ciliary structure in neurons, with potential implications for neuropsychiatric and neurodegenerative disease mechanisms. KEY POINTS: Mitochondria are cell structures known for producing energy but are also emerging as regulators of other cellular components, including primary cilia, antenna-like structures involved in cell communication. Previous studies suggest that mitochondria may influence cilia structure and function, including in astrocytes. However, this has not been explored in neurons. This study shows that natural variation in mitochondrial molecular pathways correlates with primary cilia pathways in striatal medium spiny neurons in both rats and mice. Reducing expression of mitofusin 2 (Mfn2), a key mitochondrial protein involved in fusion and mitochondria-endoplasmic reticulum interactions, changes specific molecular ciliary pathways, notably including Crocc, a gene essential for cilia structure, and reduces the levels of its protein product, rootletin, which supports cilia integrity. Our findings reveal an important role for mitochondria in regulating ciliary structure in neurons, highlighting a potential pathway for mitochondrial regulation of neuronal signalling.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Physiology-London
Journal of Physiology-London 医学-神经科学
CiteScore
9.70
自引率
7.30%
发文量
817
审稿时长
2 months
期刊介绍: The Journal of Physiology publishes full-length original Research Papers and Techniques for Physiology, which are short papers aimed at disseminating new techniques for physiological research. Articles solicited by the Editorial Board include Perspectives, Symposium Reports and Topical Reviews, which highlight areas of special physiological interest. CrossTalk articles are short editorial-style invited articles framing a debate between experts in the field on controversial topics. Letters to the Editor and Journal Club articles are also published. All categories of papers are subjected to peer reivew. The Journal of Physiology welcomes submitted research papers in all areas of physiology. Authors should present original work that illustrates new physiological principles or mechanisms. Papers on work at the molecular level, at the level of the cell membrane, single cells, tissues or organs and on systems physiology are all acceptable. Theoretical papers and papers that use computational models to further our understanding of physiological processes will be considered if based on experimentally derived data and if the hypothesis advanced is directly amenable to experimental testing. While emphasis is on human and mammalian physiology, work on lower vertebrate or invertebrate preparations may be suitable if it furthers the understanding of the functioning of other organisms including mammals.
期刊最新文献
Endothelial TRPV4-Cx43 signalling complex regulates vasomotor tone in resistance arteries. Habituation of vestibular-evoked balance responses after repeated exposure to a postural threat. The pupillary respiratory-phase response: pupil size is smallest around inhalation onset and largest during exhalation. Homeostasis in the laboratory, the clinic and our academic institutions! Glycerol metabolism is activated in both palmitic acid-stimulated and adipose tissue macrophages from a murine model of cardiometabolic heart failure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1