Motor cortex stimulation ameliorates parkinsonian locomotor deficits: effectual and mechanistic differences from subthalamic modulation

IF 6.7 1区 医学 Q1 NEUROSCIENCES NPJ Parkinson's Disease Pub Date : 2025-02-19 DOI:10.1038/s41531-025-00879-3
Lan-Hsin Nancy Lee, Chen Yuan Ngan, Cheng-Kai Yang, Ren-Wei Wang, Hsing-Jung Lai, Chia-Hsiang Chen, Ya-Chin Yang, Chung-Chin Kuo
{"title":"Motor cortex stimulation ameliorates parkinsonian locomotor deficits: effectual and mechanistic differences from subthalamic modulation","authors":"Lan-Hsin Nancy Lee, Chen Yuan Ngan, Cheng-Kai Yang, Ren-Wei Wang, Hsing-Jung Lai, Chia-Hsiang Chen, Ya-Chin Yang, Chung-Chin Kuo","doi":"10.1038/s41531-025-00879-3","DOIUrl":null,"url":null,"abstract":"<p>Subthalamic deep brain stimulation (STN DBS) has been a therapeutic choice for Parkinson’s disease (PD). We found that epidural motor cortex stimulation (MCS) with sustained positive (hyperpolarizing) currents could also consistently ameliorate the locomotor deficits in parkinsonian animals, rectifying the pathological paucity in both discharging unit varieties and movement-dependent spatiotemporal activity pattern changes in motor cortex (MC). Mechanistically, MCS hyperpolarizes both glutamatergic pyramidal neurons (PN) and GABAergic interneurons (IN) and consequently partly relieves PN from IN’s control. MC discharging units are thus enlarged with enhanced PN burst discharges against a relatively silenced background, presumably compensating for the hypoactive striatal selection to restore the MC activity changes upon movement. Behaviorally, MCS retains interim short pauses like normal locomotor behaviors, in contrast to the propensity of abnormal “restlessness” with STN DBS. Individually designed MCS, alone or in combination with STN DBS and dopaminergic therapy, may provide an optimal therapeutic approach for PD.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"81 3 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Parkinson's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41531-025-00879-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Subthalamic deep brain stimulation (STN DBS) has been a therapeutic choice for Parkinson’s disease (PD). We found that epidural motor cortex stimulation (MCS) with sustained positive (hyperpolarizing) currents could also consistently ameliorate the locomotor deficits in parkinsonian animals, rectifying the pathological paucity in both discharging unit varieties and movement-dependent spatiotemporal activity pattern changes in motor cortex (MC). Mechanistically, MCS hyperpolarizes both glutamatergic pyramidal neurons (PN) and GABAergic interneurons (IN) and consequently partly relieves PN from IN’s control. MC discharging units are thus enlarged with enhanced PN burst discharges against a relatively silenced background, presumably compensating for the hypoactive striatal selection to restore the MC activity changes upon movement. Behaviorally, MCS retains interim short pauses like normal locomotor behaviors, in contrast to the propensity of abnormal “restlessness” with STN DBS. Individually designed MCS, alone or in combination with STN DBS and dopaminergic therapy, may provide an optimal therapeutic approach for PD.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
NPJ Parkinson's Disease
NPJ Parkinson's Disease Medicine-Neurology (clinical)
CiteScore
9.80
自引率
5.70%
发文量
156
审稿时长
11 weeks
期刊介绍: npj Parkinson's Disease is a comprehensive open access journal that covers a wide range of research areas related to Parkinson's disease. It publishes original studies in basic science, translational research, and clinical investigations. The journal is dedicated to advancing our understanding of Parkinson's disease by exploring various aspects such as anatomy, etiology, genetics, cellular and molecular physiology, neurophysiology, epidemiology, and therapeutic development. By providing free and immediate access to the scientific and Parkinson's disease community, npj Parkinson's Disease promotes collaboration and knowledge sharing among researchers and healthcare professionals.
期刊最新文献
Subregion-specific associations of the basal forebrain with sleep and cognition in Parkinson’s disease Prasinezumab slows motor progression in Parkinsons disease: beyond the clinical data Motor cortex stimulation ameliorates parkinsonian locomotor deficits: effectual and mechanistic differences from subthalamic modulation Updated MDSGene review on the clinical and genetic spectrum of LRRK2 variants in Parkinson´s disease Patient-centered brain transcriptomic and multimodal imaging determinants of clinical progression, physical activity, and treatment needs in Parkinson’s disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1