Geometry of the Comptonization Region of MAXI J1348−630 through Type-C Quasiperiodic Oscillations with NICER

Kevin Alabarta, Mariano Méndez, Federico García, Diego Altamirano, Yuexin Zhang, Liang Zhang, David M. Russell and Ole König
{"title":"Geometry of the Comptonization Region of MAXI J1348−630 through Type-C Quasiperiodic Oscillations with NICER","authors":"Kevin Alabarta, Mariano Méndez, Federico García, Diego Altamirano, Yuexin Zhang, Liang Zhang, David M. Russell and Ole König","doi":"10.3847/1538-4357/ada7f9","DOIUrl":null,"url":null,"abstract":"We use the rms and lag spectra of the type-C quasiperiodic oscillation (QPO) to study the properties of the Comptonization region (aka corona) during the low/hard and hard-intermediate states of the main outburst and reflare of MAXI J1348−630. We simultaneously fit the time-averaged energy spectrum of the source and the fractional rms and phase-lag spectra of the QPO with the time-dependent Comptonization model VKOMPTH. The data can be explained by two physically connected coronae interacting with the accretion disk via a feedback loop of X-ray photons. The best-fitting model consists of a corona of ∼103 km located at the inner edge of the disk and a second corona of ∼104 km horizontally extended and covering the inner parts of the accretion disk. The properties of both coronae during the reflare are similar to those during the low/hard state of the main outburst, reinforcing the idea that both the outburst and the reflare are driven by the same physical mechanisms. We combine our results for the type-C QPO with those from previous work focused on the study of type-A and type-B QPOs with the same model to study the evolution of the geometry of the corona through the whole outburst, including the reflare of MAXI J1348−630. Finally, we show that the sudden increase in the phase-lag frequency spectrum and the sharp drop in the coherence function previously observed in MAXI J1348−630 are due to the type-C QPO during the decay of the outburst and can be explained in terms of the geometry of the coronae.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ada7f9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We use the rms and lag spectra of the type-C quasiperiodic oscillation (QPO) to study the properties of the Comptonization region (aka corona) during the low/hard and hard-intermediate states of the main outburst and reflare of MAXI J1348−630. We simultaneously fit the time-averaged energy spectrum of the source and the fractional rms and phase-lag spectra of the QPO with the time-dependent Comptonization model VKOMPTH. The data can be explained by two physically connected coronae interacting with the accretion disk via a feedback loop of X-ray photons. The best-fitting model consists of a corona of ∼103 km located at the inner edge of the disk and a second corona of ∼104 km horizontally extended and covering the inner parts of the accretion disk. The properties of both coronae during the reflare are similar to those during the low/hard state of the main outburst, reinforcing the idea that both the outburst and the reflare are driven by the same physical mechanisms. We combine our results for the type-C QPO with those from previous work focused on the study of type-A and type-B QPOs with the same model to study the evolution of the geometry of the corona through the whole outburst, including the reflare of MAXI J1348−630. Finally, we show that the sudden increase in the phase-lag frequency spectrum and the sharp drop in the coherence function previously observed in MAXI J1348−630 are due to the type-C QPO during the decay of the outburst and can be explained in terms of the geometry of the coronae.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modulation of X-Ray Flux by Obscuration of Neutron Star Boundary Layer Tracing Coherent Gas Structures in the Central Region of the Starburst Galaxy NGC 253. II. Gas Excitation and Star Formation Tip of the Iceberg: Overmassive Black Holes at 4 < z < 7 Found by JWST Are Not Inconsistent with the Local M BH ... Dynamical and Atmospheric Characterization of the Substellar Companion HD 33632 Ab from Direct Imaging, Astrometry, and Radial-velocity Data* Boltzmann–Poisson Theory of Nonthermal Self-gravitating Gases, Cold Dark Matter, and Solar Atmosphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1