Varun Sood, Ronald Holewinski, Thorkell Andresson, Daniel R. Larson, Tom Misteli
{"title":"Identification of molecular determinants of gene-specific bursting patterns by high-throughput imaging screens","authors":"Varun Sood, Ronald Holewinski, Thorkell Andresson, Daniel R. Larson, Tom Misteli","doi":"10.1016/j.molcel.2025.01.022","DOIUrl":null,"url":null,"abstract":"Stochastic transcriptional bursting is a universal property of active genes. While different genes exhibit distinct bursting patterns, the molecular mechanisms that govern gene-specific stochastic bursting are largely unknown. We have developed a high-throughput-imaging-based screening strategy to identify cellular factors that determine the bursting patterns of native genes in human cells. We identify protein acetylation as a prominent effector of burst frequency and burst size acting via decreasing off-times and gene-specific changes in the on-time. These effects are not correlated with promoter acetylation. Instead, we demonstrate acetylation of the Integrator complex as a key determinant of gene bursting that alters Integrator interactions with transcription elongation and RNA processing factors but without affecting pausing. Our results suggest a prominent role for non-histone acetylation of a transcription cofactors as a mechanism for modulation of bursting via a far-downstream checkpoint.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"1 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2025.01.022","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Stochastic transcriptional bursting is a universal property of active genes. While different genes exhibit distinct bursting patterns, the molecular mechanisms that govern gene-specific stochastic bursting are largely unknown. We have developed a high-throughput-imaging-based screening strategy to identify cellular factors that determine the bursting patterns of native genes in human cells. We identify protein acetylation as a prominent effector of burst frequency and burst size acting via decreasing off-times and gene-specific changes in the on-time. These effects are not correlated with promoter acetylation. Instead, we demonstrate acetylation of the Integrator complex as a key determinant of gene bursting that alters Integrator interactions with transcription elongation and RNA processing factors but without affecting pausing. Our results suggest a prominent role for non-histone acetylation of a transcription cofactors as a mechanism for modulation of bursting via a far-downstream checkpoint.
期刊介绍:
Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.