Zhenxiang Zhao, Melissa Y. Lucero, Shengzhang Su, Eric J. Chaney, Jiajie Jessica Xu, Michael Myszka, Jefferson Chan
{"title":"Activity-based sensing reveals elevated labile copper promotes liver aging via hepatic ALDH1A1 depletion","authors":"Zhenxiang Zhao, Melissa Y. Lucero, Shengzhang Su, Eric J. Chaney, Jiajie Jessica Xu, Michael Myszka, Jefferson Chan","doi":"10.1038/s41467-025-56585-4","DOIUrl":null,"url":null,"abstract":"<p>Oxidative stress plays a key role in aging and related diseases, including neurodegeneration, cancer, and organ failure. Copper (Cu), a redox-active metal ion, generates reactive oxygen species (ROS), and its dysregulation contributes to aging. Here, we develop activity-based imaging probes for the sensitive detection of Cu(I) and show that labile hepatic Cu activity increases with age, paralleling a decline in ALDH1A1 activity, a protective hepatic enzyme. We also observe an age-related decrease in hepatic glutathione (GSH) activity through noninvasive photoacoustic imaging. Using these probes, we perform longitudinal studies in aged mice treated with ATN-224, a Cu chelator, and demonstrate that this treatment improves Cu homeostasis and preserves ALDH1A1 activity. Our findings uncover a direct link between Cu dysregulation and aging, providing insights into its role and offering a therapeutic strategy to mitigate its effects.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56585-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Oxidative stress plays a key role in aging and related diseases, including neurodegeneration, cancer, and organ failure. Copper (Cu), a redox-active metal ion, generates reactive oxygen species (ROS), and its dysregulation contributes to aging. Here, we develop activity-based imaging probes for the sensitive detection of Cu(I) and show that labile hepatic Cu activity increases with age, paralleling a decline in ALDH1A1 activity, a protective hepatic enzyme. We also observe an age-related decrease in hepatic glutathione (GSH) activity through noninvasive photoacoustic imaging. Using these probes, we perform longitudinal studies in aged mice treated with ATN-224, a Cu chelator, and demonstrate that this treatment improves Cu homeostasis and preserves ALDH1A1 activity. Our findings uncover a direct link between Cu dysregulation and aging, providing insights into its role and offering a therapeutic strategy to mitigate its effects.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.