Manipulation and quantification of the levels of Autoinducer-2 quorum sensing signal in the mouse gut

IF 4.5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Bioorganic Chemistry Pub Date : 2025-02-13 DOI:10.1016/j.bioorg.2025.108274
Miguel V. Rodrigues , António Ferreira , Maria Ramirez-Montoya , Rita A. Oliveira , Raphaël Defaix , Peter Kis , Vitor Cabral , M. Rosário Bronze , Karina B. Xavier , M. Rita Ventura
{"title":"Manipulation and quantification of the levels of Autoinducer-2 quorum sensing signal in the mouse gut","authors":"Miguel V. Rodrigues ,&nbsp;António Ferreira ,&nbsp;Maria Ramirez-Montoya ,&nbsp;Rita A. Oliveira ,&nbsp;Raphaël Defaix ,&nbsp;Peter Kis ,&nbsp;Vitor Cabral ,&nbsp;M. Rosário Bronze ,&nbsp;Karina B. Xavier ,&nbsp;M. Rita Ventura","doi":"10.1016/j.bioorg.2025.108274","DOIUrl":null,"url":null,"abstract":"<div><div>Quorum Sensing is a signalling mechanism used by bacteria to regulate gene expression as a function of population density, enabling them to engage in group behaviours. Autoinducer-2 (AI-2) is the most ubiquitously produced quorum sensing signal among bacterial species and it is unique in its capability of fostering cell-cell signalling across species from different phyla in multispecies communities. Alterations of AI-2 levels in the mouse gut can change the composition of the major gut microbiota phyla, but given the chemical instability of this signal, its quantification in intestinal samples and in vivo manipulation are challenging. Here, we optimised a Gas Chromatography – Mass Spectrometry (GC–MS) method to detect and quantify AI-2 in intestinal samples. Using a newly synthesised deuterated AI-2 molecule as the internal standard for AI-2 quantification, we quantified the levels of AI-2 in the cecum of conventionally raised mice with a complex microbiota. Moreover, we used a commensal <em>Klebsiella</em> sp. with probiotic potential to manipulate AI-2 levels in the mouse gut. We showed that mice colonised with mutants of this commensal <em>Klebsiella</em> sp. can be used to manipulate the levels of AI-2 in the mouse gut in both mono-colonised animals and those with a complex microbiota following recovery from antibiotic treatment. Overall, our results show that the analytical approach proposed here allows for robust and specific direct measurements of AI-2 in mouse caecal samples and can also be applied to other complex biological samples containing AI-2 aiming to study the role of quorum sensing signalling in microbiota communities.</div></div>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"157 ","pages":"Article 108274"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045206825001543","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Quorum Sensing is a signalling mechanism used by bacteria to regulate gene expression as a function of population density, enabling them to engage in group behaviours. Autoinducer-2 (AI-2) is the most ubiquitously produced quorum sensing signal among bacterial species and it is unique in its capability of fostering cell-cell signalling across species from different phyla in multispecies communities. Alterations of AI-2 levels in the mouse gut can change the composition of the major gut microbiota phyla, but given the chemical instability of this signal, its quantification in intestinal samples and in vivo manipulation are challenging. Here, we optimised a Gas Chromatography – Mass Spectrometry (GC–MS) method to detect and quantify AI-2 in intestinal samples. Using a newly synthesised deuterated AI-2 molecule as the internal standard for AI-2 quantification, we quantified the levels of AI-2 in the cecum of conventionally raised mice with a complex microbiota. Moreover, we used a commensal Klebsiella sp. with probiotic potential to manipulate AI-2 levels in the mouse gut. We showed that mice colonised with mutants of this commensal Klebsiella sp. can be used to manipulate the levels of AI-2 in the mouse gut in both mono-colonised animals and those with a complex microbiota following recovery from antibiotic treatment. Overall, our results show that the analytical approach proposed here allows for robust and specific direct measurements of AI-2 in mouse caecal samples and can also be applied to other complex biological samples containing AI-2 aiming to study the role of quorum sensing signalling in microbiota communities.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioorganic Chemistry
Bioorganic Chemistry 生物-生化与分子生物学
CiteScore
9.70
自引率
3.90%
发文量
679
审稿时长
31 days
期刊介绍: Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry. For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature. The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.
期刊最新文献
Tuning the lipophilicity of new ciprofloxacin derivatives in selected ESKAPE bacteria with emphasis on E. coli mutants Mycobacterium tuberculosis d-alanine:d-alanine ligase as a case study in the measurement of competitive kinetic isotope effects for dimerization reactions Research on enhancing enzymatic degradation of anti-digestive peptides containing D-amino acids through N-terminal acetylation Berberrubine as a novel TrxR inhibitor enhances cisplatin sensitivity in the treatment of non-small cell lung cancer Reniochalistatin E: A potentiating agent and a potential novel drug delivery platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1