Yangrong Chen , Hanchuan Chen , Fei Sun , Yichao Liu , Xiaoxiao Wu , Haitao Li , Zhixing Zhang , Qianhan Sun
{"title":"Open static magnetic cloak based on DC magnetic metamaterials","authors":"Yangrong Chen , Hanchuan Chen , Fei Sun , Yichao Liu , Xiaoxiao Wu , Haitao Li , Zhixing Zhang , Qianhan Sun","doi":"10.1016/j.jmmm.2025.172885","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the significant applications of static magnetic field invisibility in avoiding metal detector detection, it has received extensive attention in recent years. However, most existing methods (e.g., multilayer closed structures based on DC magnetic metamaterials) achieve closed invisibility, hindering the exchange of information and materials between the cloak’s interior and the external environment. In this study, a DC magnetic field shifter is designed based on transformation magnetostatics and then combined with a specially designed closed DC magnetic cloak with a hole to develop an open static magnetic cloak. Numerical simulations verify the invisibility effect and multi-directional effectiveness of this open cloak. Finally, effective medium theory is utilized to achieve the open static magnetic field cloak by arranging isotropic media specifically, whose effectiveness is validated through numerical simulations.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"619 ","pages":"Article 172885"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetism and Magnetic Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304885325001167","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the significant applications of static magnetic field invisibility in avoiding metal detector detection, it has received extensive attention in recent years. However, most existing methods (e.g., multilayer closed structures based on DC magnetic metamaterials) achieve closed invisibility, hindering the exchange of information and materials between the cloak’s interior and the external environment. In this study, a DC magnetic field shifter is designed based on transformation magnetostatics and then combined with a specially designed closed DC magnetic cloak with a hole to develop an open static magnetic cloak. Numerical simulations verify the invisibility effect and multi-directional effectiveness of this open cloak. Finally, effective medium theory is utilized to achieve the open static magnetic field cloak by arranging isotropic media specifically, whose effectiveness is validated through numerical simulations.
期刊介绍:
The Journal of Magnetism and Magnetic Materials provides an important forum for the disclosure and discussion of original contributions covering the whole spectrum of topics, from basic magnetism to the technology and applications of magnetic materials. The journal encourages greater interaction between the basic and applied sub-disciplines of magnetism with comprehensive review articles, in addition to full-length contributions. In addition, other categories of contributions are welcome, including Critical Focused issues, Current Perspectives and Outreach to the General Public.
Main Categories:
Full-length articles:
Technically original research documents that report results of value to the communities that comprise the journal audience. The link between chemical, structural and microstructural properties on the one hand and magnetic properties on the other hand are encouraged.
In addition to general topics covering all areas of magnetism and magnetic materials, the full-length articles also include three sub-sections, focusing on Nanomagnetism, Spintronics and Applications.
The sub-section on Nanomagnetism contains articles on magnetic nanoparticles, nanowires, thin films, 2D materials and other nanoscale magnetic materials and their applications.
The sub-section on Spintronics contains articles on magnetoresistance, magnetoimpedance, magneto-optical phenomena, Micro-Electro-Mechanical Systems (MEMS), and other topics related to spin current control and magneto-transport phenomena. The sub-section on Applications display papers that focus on applications of magnetic materials. The applications need to show a connection to magnetism.
Review articles:
Review articles organize, clarify, and summarize existing major works in the areas covered by the Journal and provide comprehensive citations to the full spectrum of relevant literature.