{"title":"Sparse personalized federated class-incremental learning","authors":"Youchao Liu, Dingjiang Huang","doi":"10.1016/j.ins.2025.121992","DOIUrl":null,"url":null,"abstract":"<div><div>Recently federated learning (FL) has attracted growing attention by performing data-private collaborative training on decentralized clients. However, the majority of existing FL methods concentrate on single-task scenarios with static data. In real-world scenarios, local clients usually continuously collect new classes from the data stream and have just a small amount of memory to store training samples of old classes. Using single-task models directly will lead to significant catastrophic forgetting in old classes. In addition, there are some typical challenges in FL scenarios, such as computation and communication overhead, data heterogeneity, etc. To comprehensively describe these challenges, we propose a new Personalized Federated Class-Incremental Learning (PFCIL) problem. Furthermore, we propose an innovative Sparse Personalized Federated Class-Incremental Learning (SpaPFCIL) framework that learns a personalized class-incremental model for each client through sparse training to solve this problem. Unlike most knowledge distillation-based methods, our framework does not require additional data to assist. Specifically, to tackle catastrophic forgetting brought by class-incremental tasks, we utilize expandable class-incremental models instead of single-task models. For typical challenges in FL, we use dynamic sparse training to customize sparse local models on clients. It alleviates the negative effects of data heterogeneity and over-parameterization. Our framework outperforms state-of-the-art methods in terms of average accuracy on representative benchmark datasets by 3.3% to 43.6%.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"706 ","pages":"Article 121992"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025525001240","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Recently federated learning (FL) has attracted growing attention by performing data-private collaborative training on decentralized clients. However, the majority of existing FL methods concentrate on single-task scenarios with static data. In real-world scenarios, local clients usually continuously collect new classes from the data stream and have just a small amount of memory to store training samples of old classes. Using single-task models directly will lead to significant catastrophic forgetting in old classes. In addition, there are some typical challenges in FL scenarios, such as computation and communication overhead, data heterogeneity, etc. To comprehensively describe these challenges, we propose a new Personalized Federated Class-Incremental Learning (PFCIL) problem. Furthermore, we propose an innovative Sparse Personalized Federated Class-Incremental Learning (SpaPFCIL) framework that learns a personalized class-incremental model for each client through sparse training to solve this problem. Unlike most knowledge distillation-based methods, our framework does not require additional data to assist. Specifically, to tackle catastrophic forgetting brought by class-incremental tasks, we utilize expandable class-incremental models instead of single-task models. For typical challenges in FL, we use dynamic sparse training to customize sparse local models on clients. It alleviates the negative effects of data heterogeneity and over-parameterization. Our framework outperforms state-of-the-art methods in terms of average accuracy on representative benchmark datasets by 3.3% to 43.6%.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.