Towards next-generation optical potentials for nuclear reactions and structure calculations

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, NUCLEAR Nuclear Physics A Pub Date : 2025-02-15 DOI:10.1016/j.nuclphysa.2025.123037
Salvatore Simone Perrotta, Cole Davis Pruitt, Oliver C. Gorton, Jutta E. Escher
{"title":"Towards next-generation optical potentials for nuclear reactions and structure calculations","authors":"Salvatore Simone Perrotta,&nbsp;Cole Davis Pruitt,&nbsp;Oliver C. Gorton,&nbsp;Jutta E. Escher","doi":"10.1016/j.nuclphysa.2025.123037","DOIUrl":null,"url":null,"abstract":"<div><div>Optical-model potentials (OMPs) are critical ingredients for basic and applied nuclear physics. Present-day computational capabilities allow us to generate data-driven nucleon-nucleus OMPs that are non-local and exactly dispersive (as theoretically required to be), include statistically-sound uncertainty quantification, and are trained on both scattering and bound-state data from a wide area of the nuclear chart. Combined together, these features allow for significant improvement in fidelity and extrapolative power of the model. Here, we present preliminary work toward the development and training of such an OMP. The capability of the model to describe data at this first stage is encouraging.</div></div>","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":"1057 ","pages":"Article 123037"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375947425000235","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Optical-model potentials (OMPs) are critical ingredients for basic and applied nuclear physics. Present-day computational capabilities allow us to generate data-driven nucleon-nucleus OMPs that are non-local and exactly dispersive (as theoretically required to be), include statistically-sound uncertainty quantification, and are trained on both scattering and bound-state data from a wide area of the nuclear chart. Combined together, these features allow for significant improvement in fidelity and extrapolative power of the model. Here, we present preliminary work toward the development and training of such an OMP. The capability of the model to describe data at this first stage is encouraging.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光学模型势(OMP)是基础和应用核物理的关键要素。当今的计算能力使我们能够生成数据驱动的核子-核光学模型势,这些模型势具有非局部性和精确分散性(正如理论上所要求的那样),包括统计上合理的不确定性量化,并根据来自核图广泛区域的散射和束缚态数据进行训练。这些特点结合在一起,大大提高了模型的保真度和外推能力。在此,我们介绍了开发和训练这种 OMP 的初步工作。该模型在第一阶段描述数据的能力令人鼓舞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nuclear Physics A
Nuclear Physics A 物理-物理:核物理
CiteScore
3.60
自引率
7.10%
发文量
113
审稿时长
61 days
期刊介绍: Nuclear Physics A focuses on the domain of nuclear and hadronic physics and includes the following subsections: Nuclear Structure and Dynamics; Intermediate and High Energy Heavy Ion Physics; Hadronic Physics; Electromagnetic and Weak Interactions; Nuclear Astrophysics. The emphasis is on original research papers. A number of carefully selected and reviewed conference proceedings are published as an integral part of the journal.
期刊最新文献
Editorial Board Investigation of ground state and the β-decay properties of 156−162Nd The effect of three-body nucleon-nucleon interaction on the ground state binding energy of the light nuclei Enhancing heavy ion accelerator capabilities in Australia Estimating centrality in heavy-ion collisions using Transfer Learning technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1