Subtraction-free artifact-aware digital subtraction angiography image generation for head and neck vessels from motion data

IF 5.4 2区 医学 Q1 ENGINEERING, BIOMEDICAL Computerized Medical Imaging and Graphics Pub Date : 2025-02-18 DOI:10.1016/j.compmedimag.2025.102512
Yunbi Liu , Dong Du , Yun Liu , Shengxian Tu , Wei Yang , Xiaoguang Han , Shiteng Suo , Qingshan Liu
{"title":"Subtraction-free artifact-aware digital subtraction angiography image generation for head and neck vessels from motion data","authors":"Yunbi Liu ,&nbsp;Dong Du ,&nbsp;Yun Liu ,&nbsp;Shengxian Tu ,&nbsp;Wei Yang ,&nbsp;Xiaoguang Han ,&nbsp;Shiteng Suo ,&nbsp;Qingshan Liu","doi":"10.1016/j.compmedimag.2025.102512","DOIUrl":null,"url":null,"abstract":"<div><div>Digital subtraction angiography (DSA) is an essential diagnostic tool for analyzing and diagnosing vascular diseases. However, DSA imaging techniques based on subtraction are prone to artifacts due to misalignments between mask and contrast images caused by inevitable patient movements, hindering accurate vessel identification and surgical treatment. While various registration-based algorithms aim to correct these misalignments, they often fall short in efficiency and effectiveness. Recent deep learning (DL)-based studies aim to generate synthetic DSA images directly from contrast images, free of subtraction. However, these methods typically require clean, motion-free training data, which is challenging to acquire in clinical settings. As a result, existing DSA images often contain motion-affected artifacts, complicating the development of models for generating artifact-free images. In this work, we propose an innovative Artifact-aware DSA image generation method (AaDSA) that utilizes solely motion data to produce artifact-free DSA images without subtraction. Our method employs a Gradient Field Transformation (GFT)-based technique to create an artifact mask that identifies artifact regions in DSA images with minimal manual annotation. This artifact mask guides the training of the AaDSA model, allowing it to bypass the adverse effects of artifact regions during model training. During inference, the AaDSA model can automatically generate artifact-free DSA images from single contrast images without any human intervention. Experimental results on a real head-and-neck DSA dataset show that our approach significantly outperforms state-of-the-art methods, highlighting its potential for clinical use.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"121 ","pages":"Article 102512"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611125000217","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Digital subtraction angiography (DSA) is an essential diagnostic tool for analyzing and diagnosing vascular diseases. However, DSA imaging techniques based on subtraction are prone to artifacts due to misalignments between mask and contrast images caused by inevitable patient movements, hindering accurate vessel identification and surgical treatment. While various registration-based algorithms aim to correct these misalignments, they often fall short in efficiency and effectiveness. Recent deep learning (DL)-based studies aim to generate synthetic DSA images directly from contrast images, free of subtraction. However, these methods typically require clean, motion-free training data, which is challenging to acquire in clinical settings. As a result, existing DSA images often contain motion-affected artifacts, complicating the development of models for generating artifact-free images. In this work, we propose an innovative Artifact-aware DSA image generation method (AaDSA) that utilizes solely motion data to produce artifact-free DSA images without subtraction. Our method employs a Gradient Field Transformation (GFT)-based technique to create an artifact mask that identifies artifact regions in DSA images with minimal manual annotation. This artifact mask guides the training of the AaDSA model, allowing it to bypass the adverse effects of artifact regions during model training. During inference, the AaDSA model can automatically generate artifact-free DSA images from single contrast images without any human intervention. Experimental results on a real head-and-neck DSA dataset show that our approach significantly outperforms state-of-the-art methods, highlighting its potential for clinical use.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.70
自引率
3.50%
发文量
71
审稿时长
26 days
期刊介绍: The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.
期刊最新文献
A novel generative model for brain tumor detection using magnetic resonance imaging Subtraction-free artifact-aware digital subtraction angiography image generation for head and neck vessels from motion data Prior knowledge-based multi-task learning network for pulmonary nodule classification Automatic Joint Lesion Detection by enhancing local feature interaction TQGDNet: Coronary artery calcium deposit detection on computed tomography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1