Zhoufeng Wang , Xiubo Long , Wenlong Yao , Wenchi Zhang , Jinian Yang
{"title":"Study on the kinetics and mechanism of thermal decomposition of bisphenol A-type polyarylates","authors":"Zhoufeng Wang , Xiubo Long , Wenlong Yao , Wenchi Zhang , Jinian Yang","doi":"10.1016/j.jaap.2025.107040","DOIUrl":null,"url":null,"abstract":"<div><div>Three BPA-type polyarylates (PARS, PARB and PARF) with the same feeding ratio were synthesized by interfacial polymerization by doping three bisphenol A (BPA) derivative monomers (4,4’-sulfobisphenol (BPS), 2,2-bis(4-hydroxy phenyl)butane (BPB) and 9,9-bis(4-hydroxyphenyl)fluorene (BHPF)). The kinetics of thermal decomposition of polyarylate was studied by three methods and the activation energies of PARS, PARB and PARF were 198.34, 218.12 and 234.96 kJ/mol, respectively. The thermal stability of the three polyarylates followed PARS < PARB < PARF. Fitted by the integral Master-Plots method, the random nucleation was the pyrolysis mechanism of BPA-type polyarylates. Further elucidation of the pyrolysis process was attained through the deployment of thermogravimetric analysis coupled with Fourier transform infrared spectrometry (TG/FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS). The study suggested that the pyrolysis pathways of polyarylates were significantly influenced by the properties of their backbone groups; specifically, the breaking weaker bonds (e.g., C–S, C–O) facilitated the initial cleavage of molecular chains. This preliminary disruption then catalyzed further decomposition, forming the reactive radicals that subsequently underwent self-association or isomerization, culminating in new compounds. The effect of BPA-derived monomers on the thermal properties and pyrolytic behaviour of polyarylate was clearly demonstrated in this study.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"188 ","pages":"Article 107040"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical and Applied Pyrolysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165237025000932","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Three BPA-type polyarylates (PARS, PARB and PARF) with the same feeding ratio were synthesized by interfacial polymerization by doping three bisphenol A (BPA) derivative monomers (4,4’-sulfobisphenol (BPS), 2,2-bis(4-hydroxy phenyl)butane (BPB) and 9,9-bis(4-hydroxyphenyl)fluorene (BHPF)). The kinetics of thermal decomposition of polyarylate was studied by three methods and the activation energies of PARS, PARB and PARF were 198.34, 218.12 and 234.96 kJ/mol, respectively. The thermal stability of the three polyarylates followed PARS < PARB < PARF. Fitted by the integral Master-Plots method, the random nucleation was the pyrolysis mechanism of BPA-type polyarylates. Further elucidation of the pyrolysis process was attained through the deployment of thermogravimetric analysis coupled with Fourier transform infrared spectrometry (TG/FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS). The study suggested that the pyrolysis pathways of polyarylates were significantly influenced by the properties of their backbone groups; specifically, the breaking weaker bonds (e.g., C–S, C–O) facilitated the initial cleavage of molecular chains. This preliminary disruption then catalyzed further decomposition, forming the reactive radicals that subsequently underwent self-association or isomerization, culminating in new compounds. The effect of BPA-derived monomers on the thermal properties and pyrolytic behaviour of polyarylate was clearly demonstrated in this study.
期刊介绍:
The Journal of Analytical and Applied Pyrolysis (JAAP) is devoted to the publication of papers dealing with innovative applications of pyrolysis processes, the characterization of products related to pyrolysis reactions, and investigations of reaction mechanism. To be considered by JAAP, a manuscript should present significant progress in these topics. The novelty must be satisfactorily argued in the cover letter. A manuscript with a cover letter to the editor not addressing the novelty is likely to be rejected without review.