Xi Zeng , Hang Wu , Yinuo Xu , Hui Liu , Beizhen Xie , Hong Liu
{"title":"Analysis of suitable site candidates for Mars human habitat and life-support technologies based on in situ water resource utilization","authors":"Xi Zeng , Hang Wu , Yinuo Xu , Hui Liu , Beizhen Xie , Hong Liu","doi":"10.1016/j.lssr.2025.02.001","DOIUrl":null,"url":null,"abstract":"<div><div>Human mission to Mars endowed with multiplex challenges has attracted global attentions in the space field. Life support technology is one of the key technologies for deep space exploration, which distinguishes human missions from unhuman ones. Among the life support materials for human space flight, water accounts for the largest weight. Realizing water recycling and <em>in situ</em> water resource utilization (ISWRU) is of great significance for reducing the dependence of human spacecraft on ground supply and for establishing sustainable Mars human habitats. Therefore, this review begins with the summarization of the existence forms and distribution of water on Mars in view of the water source for future human Mars exploration missions and the construction of Mars habitats. Then, suitable Mars human landing and habitat sites are discussed on the basis of convenient ISWRU. Finally, typical Mars habitat design concepts, bioregenerative life support technologies and potential Mars water extraction and purification technologies are also introduced, which we consider to be vital to Mars habitats with ISWRU capability.</div></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"45 ","pages":"Pages 91-106"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Sciences in Space Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214552425000215","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Human mission to Mars endowed with multiplex challenges has attracted global attentions in the space field. Life support technology is one of the key technologies for deep space exploration, which distinguishes human missions from unhuman ones. Among the life support materials for human space flight, water accounts for the largest weight. Realizing water recycling and in situ water resource utilization (ISWRU) is of great significance for reducing the dependence of human spacecraft on ground supply and for establishing sustainable Mars human habitats. Therefore, this review begins with the summarization of the existence forms and distribution of water on Mars in view of the water source for future human Mars exploration missions and the construction of Mars habitats. Then, suitable Mars human landing and habitat sites are discussed on the basis of convenient ISWRU. Finally, typical Mars habitat design concepts, bioregenerative life support technologies and potential Mars water extraction and purification technologies are also introduced, which we consider to be vital to Mars habitats with ISWRU capability.
期刊介绍:
Life Sciences in Space Research publishes high quality original research and review articles in areas previously covered by the Life Sciences section of COSPAR''s other society journal Advances in Space Research.
Life Sciences in Space Research features an editorial team of top scientists in the space radiation field and guarantees a fast turnaround time from submission to editorial decision.