Response of soil infiltration and water to orchard mulching practices in the Loess Plateau, China

IF 5.4 1区 农林科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Catena Pub Date : 2025-02-20 DOI:10.1016/j.catena.2025.108848
Yang Liao , Lingbo Dong , Wenwen Lv , Jingwei Shi , Jianzhao Wu , Ao Li , Hailong Zhang , Ruihua Bai , Yulin Liu , Jiwei Li , Zhouping Shangguan , Lei Deng
{"title":"Response of soil infiltration and water to orchard mulching practices in the Loess Plateau, China","authors":"Yang Liao ,&nbsp;Lingbo Dong ,&nbsp;Wenwen Lv ,&nbsp;Jingwei Shi ,&nbsp;Jianzhao Wu ,&nbsp;Ao Li ,&nbsp;Hailong Zhang ,&nbsp;Ruihua Bai ,&nbsp;Yulin Liu ,&nbsp;Jiwei Li ,&nbsp;Zhouping Shangguan ,&nbsp;Lei Deng","doi":"10.1016/j.catena.2025.108848","DOIUrl":null,"url":null,"abstract":"<div><div>Mulching practices, widely applied in arid and semi-arid areas, regulates terrestrial hydrological processes in agricultural soils. However, the mechanism by which mulching practices influence soil infiltration and water on the Loess Plateau remains unclear. Field experiments were conducted in October 2022 to investigate the variations in soil infiltration capacity and water storage under different mulching practices: straw mulching, rape intercropping mulching, and conventional tillage. Compared to conventional tillage, straw mulching showed faster infiltration rates both in topsoil and subsoil, whereas rape intercropping mulching had lower subsoil infiltration rates. Soil moisture replenishment was 25.4 % higher in the topsoil and 10.2 % higher in the subsoil under straw mulching. A porous soil structure, stable aggregates, abundant organic matter, and roots improved the infiltration capacity, whereas biocrusts impeded infiltration. Owing to the different traits of plough pan between treatments, subsoil had great effect (49.3 %) on topsoil infiltration changes. Straw mulching showed 18 % higher soil water storage (<em>p</em> &lt; 0.05) at 0–100 cm depth, whereas rape intercropping mulching did not result in significant changes (<em>p</em> &gt; 0.05). Both tillage frequency and understory biomass can indirectly affect soil infiltration and water storage by impacting the bulk density, porosity, aggregates, and organic matter. Understory biomass can also directly affect soil water storage by regulating rainfall distribution and reducing evaporation. These findings offer new insights into soil hydrological processes in agro-ecosystems of arid areas.</div></div>","PeriodicalId":9801,"journal":{"name":"Catena","volume":"252 ","pages":"Article 108848"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catena","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S034181622500150X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mulching practices, widely applied in arid and semi-arid areas, regulates terrestrial hydrological processes in agricultural soils. However, the mechanism by which mulching practices influence soil infiltration and water on the Loess Plateau remains unclear. Field experiments were conducted in October 2022 to investigate the variations in soil infiltration capacity and water storage under different mulching practices: straw mulching, rape intercropping mulching, and conventional tillage. Compared to conventional tillage, straw mulching showed faster infiltration rates both in topsoil and subsoil, whereas rape intercropping mulching had lower subsoil infiltration rates. Soil moisture replenishment was 25.4 % higher in the topsoil and 10.2 % higher in the subsoil under straw mulching. A porous soil structure, stable aggregates, abundant organic matter, and roots improved the infiltration capacity, whereas biocrusts impeded infiltration. Owing to the different traits of plough pan between treatments, subsoil had great effect (49.3 %) on topsoil infiltration changes. Straw mulching showed 18 % higher soil water storage (p < 0.05) at 0–100 cm depth, whereas rape intercropping mulching did not result in significant changes (p > 0.05). Both tillage frequency and understory biomass can indirectly affect soil infiltration and water storage by impacting the bulk density, porosity, aggregates, and organic matter. Understory biomass can also directly affect soil water storage by regulating rainfall distribution and reducing evaporation. These findings offer new insights into soil hydrological processes in agro-ecosystems of arid areas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Catena
Catena 环境科学-地球科学综合
CiteScore
10.50
自引率
9.70%
发文量
816
审稿时长
54 days
期刊介绍: Catena publishes papers describing original field and laboratory investigations and reviews on geoecology and landscape evolution with emphasis on interdisciplinary aspects of soil science, hydrology and geomorphology. It aims to disseminate new knowledge and foster better understanding of the physical environment, of evolutionary sequences that have resulted in past and current landscapes, and of the natural processes that are likely to determine the fate of our terrestrial environment. Papers within any one of the above topics are welcome provided they are of sufficiently wide interest and relevance.
期刊最新文献
Soil organic carbon loss from forest road prisms in a mountainous catchment Effects of agricultural terraces on landslide occurrence: Insights from a tropical mountainous region (Rwanda, Africa) Diversity of evapotranspiration and water use efficiency for complex ecosystems in the Horqin Sandy Land Spatial and temporal variability of dust flux in Sistan and its response to climate and vegetation controls Isoerodent surfaces of the continental US for conservation planning with the RUSLE2 water erosion model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1