{"title":"State-of-the-art review and benchmarking of barcode localization methods","authors":"Enrico Vezzali , Federico Bolelli , Stefano Santi , Costantino Grana","doi":"10.1016/j.engappai.2025.110259","DOIUrl":null,"url":null,"abstract":"<div><div>Barcodes, despite their long history, remain an essential technology in supply chain management. In addition, barcodes have found extensive use in industrial engineering, particularly in warehouse automation, component tracking, and robot guidance. To detect a barcode in an image, multiple algorithms have been proposed in the literature, with a significant increase of interest in the topic since the rise of deep learning. However, research in the field suffers from many limitations, including the scarcity of public datasets and code implementations which hinders the reproducibility and reliability of published results. For this reason, we developed “BarBeR” (Barcode Benchmark Repository), a benchmark designed for testing and comparing barcode detection algorithms. This benchmark includes the code implementation of various detection algorithms for barcodes, along with a suite of useful metrics. Among the supported localization methods, there are multiple deep-learning detection models, that will be used to assess the recent contributions of Artificial Intelligence to this field. In addition, we provide a large, annotated dataset of 8 748 barcode images, combining multiple public barcode datasets with standardized annotation formats for both detection and segmentation tasks. Finally, we provide a thorough summary of the history and literature on barcode localization and share the results obtained from running the benchmark on our dataset, offering valuable insights into the performance of different algorithms when applied to real-world problems.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"147 ","pages":"Article 110259"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625002593","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Barcodes, despite their long history, remain an essential technology in supply chain management. In addition, barcodes have found extensive use in industrial engineering, particularly in warehouse automation, component tracking, and robot guidance. To detect a barcode in an image, multiple algorithms have been proposed in the literature, with a significant increase of interest in the topic since the rise of deep learning. However, research in the field suffers from many limitations, including the scarcity of public datasets and code implementations which hinders the reproducibility and reliability of published results. For this reason, we developed “BarBeR” (Barcode Benchmark Repository), a benchmark designed for testing and comparing barcode detection algorithms. This benchmark includes the code implementation of various detection algorithms for barcodes, along with a suite of useful metrics. Among the supported localization methods, there are multiple deep-learning detection models, that will be used to assess the recent contributions of Artificial Intelligence to this field. In addition, we provide a large, annotated dataset of 8 748 barcode images, combining multiple public barcode datasets with standardized annotation formats for both detection and segmentation tasks. Finally, we provide a thorough summary of the history and literature on barcode localization and share the results obtained from running the benchmark on our dataset, offering valuable insights into the performance of different algorithms when applied to real-world problems.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.