Po-Cheng Chang , Zhi-Yong Liu , Yu-Chang Huang , Jung-Sheng Chen , Chung-Chuan Chou , Hung-Ta Wo , Wen-Chen Lee , Hao-Tien Liu , Chun-Chieh Wang , Ching-Heng Lin , Pei-Hsuan Tung , Chang-Fu Kuo , Ming-Shien Wen
{"title":"Utilizing 12-lead electrocardiogram and machine learning to retrospectively estimate and prospectively predict atrial fibrillation and stroke risk","authors":"Po-Cheng Chang , Zhi-Yong Liu , Yu-Chang Huang , Jung-Sheng Chen , Chung-Chuan Chou , Hung-Ta Wo , Wen-Chen Lee , Hao-Tien Liu , Chun-Chieh Wang , Ching-Heng Lin , Pei-Hsuan Tung , Chang-Fu Kuo , Ming-Shien Wen","doi":"10.1016/j.compbiomed.2025.109871","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The stroke risk in patients with subclinical atrial fibrillation (AF) is underestimated. By identifying patients at high risk of embolic stroke, health-care professionals can make more informed decisions regarding anticoagulation treatment to prevent stroke. The main aim of this study was to forecast the risk of AF both retrospectively and prospectively.</div></div><div><h3>Methods</h3><div>The research used a dataset of patients who had received a standard 12-lead electrocardiogram (ECG) at the seven branches of Chang Gung Memorial Hospital between October 2007 and December 2019. Using convolutional neural network (CNN) ECG models, the study classified the risk of AF development both retrospectively and prospectively in 1,776,968 patients by analyzing their 12-lead ECG. The study also examined the risk of stroke, hospitalization for heart failure (HF), myocardial infarction (MI), and death among patients with predicted AF versus that of those with normal sinus rhythm.</div></div><div><h3>Results</h3><div>The CNN models could be used to accurately diagnose AF, assess the risk of past AF episodes, and predict the risk of future AF episodes with high accuracy, as shown by areas under the receiver operating characteristic curve of 0.99, 0.86, and 0.85, respectively. Patients who were estimated to have had past AF or predicted to have future AF were at a higher risk of developing stroke, HF hospitalization, MI, and mortality. The ECGs of patients with predicted AF tended to exhibit lower R-wave amplitudes and flattened T waves. Additionally, we observed that the QRS complexes in leads V1, aVL, and aVR were highly weighted in predicting AF in the CNN models.</div></div><div><h3>Conclusions</h3><div>The CNN models were effective for estimating the past and future risk of AF by analyzing 12-lead ECG. Patients with predicted AF had a higher risk of developing stroke, hospitalization for HF, MI, and death. By using this AF prediction model, physicians may be able to identify patients who should be screened for AF and taking action to prevent stroke and manage cardiovascular risk.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"188 ","pages":"Article 109871"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525002227","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The stroke risk in patients with subclinical atrial fibrillation (AF) is underestimated. By identifying patients at high risk of embolic stroke, health-care professionals can make more informed decisions regarding anticoagulation treatment to prevent stroke. The main aim of this study was to forecast the risk of AF both retrospectively and prospectively.
Methods
The research used a dataset of patients who had received a standard 12-lead electrocardiogram (ECG) at the seven branches of Chang Gung Memorial Hospital between October 2007 and December 2019. Using convolutional neural network (CNN) ECG models, the study classified the risk of AF development both retrospectively and prospectively in 1,776,968 patients by analyzing their 12-lead ECG. The study also examined the risk of stroke, hospitalization for heart failure (HF), myocardial infarction (MI), and death among patients with predicted AF versus that of those with normal sinus rhythm.
Results
The CNN models could be used to accurately diagnose AF, assess the risk of past AF episodes, and predict the risk of future AF episodes with high accuracy, as shown by areas under the receiver operating characteristic curve of 0.99, 0.86, and 0.85, respectively. Patients who were estimated to have had past AF or predicted to have future AF were at a higher risk of developing stroke, HF hospitalization, MI, and mortality. The ECGs of patients with predicted AF tended to exhibit lower R-wave amplitudes and flattened T waves. Additionally, we observed that the QRS complexes in leads V1, aVL, and aVR were highly weighted in predicting AF in the CNN models.
Conclusions
The CNN models were effective for estimating the past and future risk of AF by analyzing 12-lead ECG. Patients with predicted AF had a higher risk of developing stroke, hospitalization for HF, MI, and death. By using this AF prediction model, physicians may be able to identify patients who should be screened for AF and taking action to prevent stroke and manage cardiovascular risk.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.