Photocatalysis of an organic pollutant using ZnOsemiconductor nanoparticles embedded biogenic nitrogen doped carbon dots

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering: B Pub Date : 2025-02-21 DOI:10.1016/j.mseb.2025.118090
Chandrasekaran Dhanush , Maya Ismayati , Mathur Gopalakrishnan Sethuraman
{"title":"Photocatalysis of an organic pollutant using ZnOsemiconductor nanoparticles embedded biogenic nitrogen doped carbon dots","authors":"Chandrasekaran Dhanush ,&nbsp;Maya Ismayati ,&nbsp;Mathur Gopalakrishnan Sethuraman","doi":"10.1016/j.mseb.2025.118090","DOIUrl":null,"url":null,"abstract":"<div><div>Highly fluorescent natural carbon dots (NCDs) were synthesized using <em>Ixora coccinea</em> flower extract. These amorphous NCDs, around 3 nm in size, were characterized by FT-IR, confirming the presence of functional groups such as –OH, C–H, C=O, and C-N. Optical properties of the NCDs were explored through UV–Visible and fluorescence spectroscopy. A ZnO-NPs@NCDs composite was prepared, with a band-gap value of 3.58 eV, indicating its UV responsiveness. FT-IR analysis revealed carbonyl and hydroxyl functional groups in the composite. XRD confirmed the hexagonal Wurtzite phase of ZnO, with an average particle size of 36.42 nm, determined by Scherrer’s equation. Raman studies showed a reduction in amorphous nature due to the integration of crystalline ZnO-NPs. XPS analysis detailed the chemical composition and elemental states of the composite. ZnO-NPs@NCDs acted as an efficient catalyst in the photocatalytic degradation of MO dye, achieving 95 % degradation within 50 min, due to enhanced synergistic effects and interfacial interactions.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"316 ","pages":"Article 118090"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725001138","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Highly fluorescent natural carbon dots (NCDs) were synthesized using Ixora coccinea flower extract. These amorphous NCDs, around 3 nm in size, were characterized by FT-IR, confirming the presence of functional groups such as –OH, C–H, C=O, and C-N. Optical properties of the NCDs were explored through UV–Visible and fluorescence spectroscopy. A ZnO-NPs@NCDs composite was prepared, with a band-gap value of 3.58 eV, indicating its UV responsiveness. FT-IR analysis revealed carbonyl and hydroxyl functional groups in the composite. XRD confirmed the hexagonal Wurtzite phase of ZnO, with an average particle size of 36.42 nm, determined by Scherrer’s equation. Raman studies showed a reduction in amorphous nature due to the integration of crystalline ZnO-NPs. XPS analysis detailed the chemical composition and elemental states of the composite. ZnO-NPs@NCDs acted as an efficient catalyst in the photocatalytic degradation of MO dye, achieving 95 % degradation within 50 min, due to enhanced synergistic effects and interfacial interactions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
期刊最新文献
Photocatalysis of an organic pollutant using ZnOsemiconductor nanoparticles embedded biogenic nitrogen doped carbon dots Enhanced sunlight-driven photocatalytic activity of (Cu, TM) (TM = Mg, Mn, Ag) dual-doped ZnS quantum dots for multi-dye degradation and improved reusability through PVA polymer Integration Re/Os-doping induced insulator-to-half metal transition and magnetic anisotropy energy in Lu2NiIrO6 Optoelectronic and transport response of double perovskites Na2AuMX6 (M = Al, Ga, and X  = Br, I) for energy harvesting: A DFT investigation Investigating the effect and structural properties of Graphene and Borophene on lead-free perovskite: Introducing the Graphene/CsSnCl3/Borophene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1