Variational Bayesian Tensor Quantile Regression

IF 0.8 3区 数学 Q2 MATHEMATICS Acta Mathematica Sinica-English Series Pub Date : 2025-02-15 DOI:10.1007/s10114-025-3390-4
Yunzhi Jin, Yanqing Zhang
{"title":"Variational Bayesian Tensor Quantile Regression","authors":"Yunzhi Jin,&nbsp;Yanqing Zhang","doi":"10.1007/s10114-025-3390-4","DOIUrl":null,"url":null,"abstract":"<div><p>Quantile regression is widely used in variable relationship research for statistical learning. Traditional quantile regression model is based on vector-valued covariates and can be efficiently estimated via traditional estimation methods. However, many modern applications involve tensor data with the intrinsic tensor structure. Traditional quantile regression can not deal with tensor regression issues well. To this end, we consider a tensor quantile regression with tensor-valued covariates and develop a novel variational Bayesian estimation approach to make estimation and prediction based on the asymmetric Laplace model and the CANDECOMP/PARAFAC decomposition of tensor coefficients. To incorporate the sparsity of tensor coefficients, we consider the multiway shrinkage priors for marginal factor vectors of tensor coefficients. The key idea of the proposed method is to efficiently combine the prior structural information of tensor and utilize the matricization of tensor decomposition to simplify the complexity of tensor coefficient estimation. The coordinate ascent algorithm is employed to optimize variational lower bound. Simulation studies and a real example show the numerical performances of the proposed method.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"41 2","pages":"733 - 756"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-025-3390-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Quantile regression is widely used in variable relationship research for statistical learning. Traditional quantile regression model is based on vector-valued covariates and can be efficiently estimated via traditional estimation methods. However, many modern applications involve tensor data with the intrinsic tensor structure. Traditional quantile regression can not deal with tensor regression issues well. To this end, we consider a tensor quantile regression with tensor-valued covariates and develop a novel variational Bayesian estimation approach to make estimation and prediction based on the asymmetric Laplace model and the CANDECOMP/PARAFAC decomposition of tensor coefficients. To incorporate the sparsity of tensor coefficients, we consider the multiway shrinkage priors for marginal factor vectors of tensor coefficients. The key idea of the proposed method is to efficiently combine the prior structural information of tensor and utilize the matricization of tensor decomposition to simplify the complexity of tensor coefficient estimation. The coordinate ascent algorithm is employed to optimize variational lower bound. Simulation studies and a real example show the numerical performances of the proposed method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
期刊最新文献
Preface of the Special Issue on Statistics Inference for High-Dimensional Streamed Longitudinal Data Robust Multi-Task Regression with Shifting Low-Rank Patterns Reproducible Learning of Gaussian Graphical Models via Graphical Lasso Multiple Data Splitting Efficient Estimation of Single-index Models with Deep ReQU Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1