Eleanor R. Dickinson, Jesper Bruun Mosbacher, Colleen Arnison, Kimberlee Beckmen, Steeve D. Côté, Juliette Di Francesco, Sophia V. Hansson, Elham Z. Jahromi, David W. Kinniburgh, Gäel Le Roux, Lisa-Marie Leclerc, Fabien Mavrot, Niels M. Schmidt, Michael J. Suitor, Joëlle Taillon, Matilde Tomaselli, Susan J. Kutz
{"title":"Qiviut Trace and Macro Element Profile Reflects Muskox Population Trends","authors":"Eleanor R. Dickinson, Jesper Bruun Mosbacher, Colleen Arnison, Kimberlee Beckmen, Steeve D. Côté, Juliette Di Francesco, Sophia V. Hansson, Elham Z. Jahromi, David W. Kinniburgh, Gäel Le Roux, Lisa-Marie Leclerc, Fabien Mavrot, Niels M. Schmidt, Michael J. Suitor, Joëlle Taillon, Matilde Tomaselli, Susan J. Kutz","doi":"10.1002/ece3.71020","DOIUrl":null,"url":null,"abstract":"<p>Understanding the drivers influencing ungulate population dynamics is crucial for developing conservation and management strategies to support wildlife health. Trace and macro elements are vital for ungulate growth, reproduction and survival. Thus, the trajectory of wildlife populations may be associated with element imbalances. Element concentrations can be measured in hair, an increasingly recognised bio-monitoring tool. However, a better understanding of the relevance for wild ungulate population dynamics is needed. This study aimed to assess if element profiles in hair reflected the population trajectory of a keystone Arctic ungulate, muskox <i>Ovibos moschatus,</i> and whether benchmarks could be defined for element concentrations to assess population status. We measured qiviut (hair) element concentrations of 11 muskox populations ranging across northern America, including Greenland, and evaluated the association between element concentrations and different population trajectories. Seven trace and macro elements differentiated increasing populations from declining and stable populations using linear discriminant analysis. In general, copper, selenium, iron, manganese and cobalt tended to be at higher concentrations in increasing populations, whereas zinc and calcium were generally at lower concentrations in these populations, though variations were observed among populations. Benchmarks were defined for copper, selenium and iron, indicating populations were more likely to decline below a threshold concentration of these elements (‘limit’) and increase above a threshold concentration (‘target’). ‘Limit’ benchmarks were defined for zinc and calcium where populations were more likely to be increasing below this threshold value. Hair element profiles are a useful indicator of population trajectory in wild ungulate populations. Identified benchmarks can be used to assess population status, complementing ongoing but irregular and expensive monitoring efforts like population surveys, while trace element concentrations can provide insights into the mechanisms driving population change. Hair samples can easily be collected non-invasively or alongside other monitoring activities, enhancing proactive wildlife management and conservation.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":"15 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece3.71020","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece3.71020","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the drivers influencing ungulate population dynamics is crucial for developing conservation and management strategies to support wildlife health. Trace and macro elements are vital for ungulate growth, reproduction and survival. Thus, the trajectory of wildlife populations may be associated with element imbalances. Element concentrations can be measured in hair, an increasingly recognised bio-monitoring tool. However, a better understanding of the relevance for wild ungulate population dynamics is needed. This study aimed to assess if element profiles in hair reflected the population trajectory of a keystone Arctic ungulate, muskox Ovibos moschatus, and whether benchmarks could be defined for element concentrations to assess population status. We measured qiviut (hair) element concentrations of 11 muskox populations ranging across northern America, including Greenland, and evaluated the association between element concentrations and different population trajectories. Seven trace and macro elements differentiated increasing populations from declining and stable populations using linear discriminant analysis. In general, copper, selenium, iron, manganese and cobalt tended to be at higher concentrations in increasing populations, whereas zinc and calcium were generally at lower concentrations in these populations, though variations were observed among populations. Benchmarks were defined for copper, selenium and iron, indicating populations were more likely to decline below a threshold concentration of these elements (‘limit’) and increase above a threshold concentration (‘target’). ‘Limit’ benchmarks were defined for zinc and calcium where populations were more likely to be increasing below this threshold value. Hair element profiles are a useful indicator of population trajectory in wild ungulate populations. Identified benchmarks can be used to assess population status, complementing ongoing but irregular and expensive monitoring efforts like population surveys, while trace element concentrations can provide insights into the mechanisms driving population change. Hair samples can easily be collected non-invasively or alongside other monitoring activities, enhancing proactive wildlife management and conservation.
期刊介绍:
Ecology and Evolution is the peer reviewed journal for rapid dissemination of research in all areas of ecology, evolution and conservation science. The journal gives priority to quality research reports, theoretical or empirical, that develop our understanding of organisms and their diversity, interactions between them, and the natural environment.
Ecology and Evolution gives prompt and equal consideration to papers reporting theoretical, experimental, applied and descriptive work in terrestrial and aquatic environments. The journal will consider submissions across taxa in areas including but not limited to micro and macro ecological and evolutionary processes, characteristics of and interactions between individuals, populations, communities and the environment, physiological responses to environmental change, population genetics and phylogenetics, relatedness and kin selection, life histories, systematics and taxonomy, conservation genetics, extinction, speciation, adaption, behaviour, biodiversity, species abundance, macroecology, population and ecosystem dynamics, and conservation policy.