Bruno Di Geronimo, Špela Mandl, Santiago Alonso-Gil, Bojan Žagrović, Gilbert Reibnegger, Christoph Nusshold, Pedro A Sánchez-Murcia
{"title":"Digging out the Molecular Connections between the Catalytic Mechanism of Human Lysosomal α-Mannosidase and Its Pathophysiology.","authors":"Bruno Di Geronimo, Špela Mandl, Santiago Alonso-Gil, Bojan Žagrović, Gilbert Reibnegger, Christoph Nusshold, Pedro A Sánchez-Murcia","doi":"10.1021/acs.jcim.4c02229","DOIUrl":null,"url":null,"abstract":"<p><p>Human lysosomal α-mannosidase (hLAMAN) is a paradigmatic example of how a few missense mutations can critically affect normal catabolism in the lysosome and cause the severe condition named α-mannosidosis. Here, using extensive quantum mechanical/molecular mechanical metadynamics calculations, we show how four reported pathological orthosteric and allosteric single-point mutations alter substrate puckering in the Michaelis complex and how the D74E mutation doubles the energy barrier of the rate-limiting step compared to the wild-type enzyme.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02229","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Human lysosomal α-mannosidase (hLAMAN) is a paradigmatic example of how a few missense mutations can critically affect normal catabolism in the lysosome and cause the severe condition named α-mannosidosis. Here, using extensive quantum mechanical/molecular mechanical metadynamics calculations, we show how four reported pathological orthosteric and allosteric single-point mutations alter substrate puckering in the Michaelis complex and how the D74E mutation doubles the energy barrier of the rate-limiting step compared to the wild-type enzyme.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.