Bulk Anion Recognition Kinetically Holds Back Interfacial Adsorption.

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2025-02-20 DOI:10.1021/acs.jpclett.4c03551
Pan Sun, Nabarupa Bhattacharjee, Jeffrey D Einkauf, Benjamin Doughty
{"title":"Bulk Anion Recognition Kinetically Holds Back Interfacial Adsorption.","authors":"Pan Sun, Nabarupa Bhattacharjee, Jeffrey D Einkauf, Benjamin Doughty","doi":"10.1021/acs.jpclett.4c03551","DOIUrl":null,"url":null,"abstract":"<p><p>The competition between bulk and interfacial phenomena underlies many key processes in complex chemical phenomena and transport. While competitive processes are often framed in a thermodynamic context, opportunities to leverage transient species found away from equilibrium can provide a kinetic handle to achieve unconventional reaction outcomes. In this work, we outfit an iminoguanidinium headgroup capable of selective SO<sub>4</sub><sup>2-</sup> complexation with alkyl tails of varying complexity to probe competitive bulk and interfacial reaction pathways and tune kinetic pathways for selective chemical separations. Using sum frequency generation (SFG) vibrational spectroscopy we unexpectedly find that adsorption of ligands to the air-aqueous interface was dramatically slowed down for species with increasingly hydrophobic tails. Underlying this phenomenon, we show that the formation of bulk colloidal species with differing propensities for SO<sub>4</sub><sup>2-</sup> inhibited surface adsorption via a kinetic bottleneck in the exchange of molecular extractants with colloidal aggregates. This kinetic effect could open up avenues to access unconventional selectivity via complexation of strongly coordinating species in the bulk phase, allowing for more weakly coordinating species to transport via interfacial mechanisms. This work broadly probes nonequilibrium phenomena in chemical separations that arise through unexpected interfacial events that are neglected in traditional equilibrium descriptions.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":" ","pages":"2128-2135"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c03551","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The competition between bulk and interfacial phenomena underlies many key processes in complex chemical phenomena and transport. While competitive processes are often framed in a thermodynamic context, opportunities to leverage transient species found away from equilibrium can provide a kinetic handle to achieve unconventional reaction outcomes. In this work, we outfit an iminoguanidinium headgroup capable of selective SO42- complexation with alkyl tails of varying complexity to probe competitive bulk and interfacial reaction pathways and tune kinetic pathways for selective chemical separations. Using sum frequency generation (SFG) vibrational spectroscopy we unexpectedly find that adsorption of ligands to the air-aqueous interface was dramatically slowed down for species with increasingly hydrophobic tails. Underlying this phenomenon, we show that the formation of bulk colloidal species with differing propensities for SO42- inhibited surface adsorption via a kinetic bottleneck in the exchange of molecular extractants with colloidal aggregates. This kinetic effect could open up avenues to access unconventional selectivity via complexation of strongly coordinating species in the bulk phase, allowing for more weakly coordinating species to transport via interfacial mechanisms. This work broadly probes nonequilibrium phenomena in chemical separations that arise through unexpected interfacial events that are neglected in traditional equilibrium descriptions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
Ligand Effects on Luminescence of Atomically Precise Gold Nanoclusters Temperature Effects on the Electronic Structures of Epitaxial 1T′-WSe2 Monolayers Phenomenological Modeling of Electron–Hole Recombination in Promising Photocatalytic Magnetic Materials Multiple Chemical Interactions in Additive Engineering of Perovskite for Enhanced Efficiency and Stability of Pure Blue Light-Emitting Diodes Issue Editorial Masthead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1