Replacing a Cereblon Ligand by a DDB1 and CUL4 Associated Factor 11 (DCAF11) Recruiter Converts a Selective Histone Deacetylase 6 PROTAC into a pan-degrader.

IF 3.6 4区 医学 Q2 CHEMISTRY, MEDICINAL ChemMedChem Pub Date : 2025-02-20 DOI:10.1002/cmdc.202500035
Felix Feller, Heiko Weber, Martina Miranda, Irina Honin, Maria Hanl, Finn Kristian Hansen
{"title":"Replacing a Cereblon Ligand by a DDB1 and CUL4 Associated Factor 11 (DCAF11) Recruiter Converts a Selective Histone Deacetylase 6 PROTAC into a pan-degrader.","authors":"Felix Feller, Heiko Weber, Martina Miranda, Irina Honin, Maria Hanl, Finn Kristian Hansen","doi":"10.1002/cmdc.202500035","DOIUrl":null,"url":null,"abstract":"<p><p>Proteolysis-targeting chimeras (PROTACs) have recently gained popularity as targeted protein degradation (TPD) promises to overcome the limitations of occupancy-driven pharmacology. However, most degraders rely on a small number of E3 ligases. In this study, we present the first-in-class histone deacetylase (HDAC) PROTACs recruiting the DDB1- and CUL4- associated factor 11 (DCAF11). We established a synthesis route entirely on solid-phase to prepare a set of eleven degraders. The long and flexible spacer bearing FF2039 (1j) showed significant HDAC1 and 6 degradation in combination with cytotoxicity against the multiple myeloma cell line MM.1S. Further investigations revealed that 1j was also able to degrade HDAC isoforms of class I, IIa and IIb. Compared to our previously published cereblon-recruiting HDAC6 selective PROTAC A6, we succesfully transformed the selective degrader into a pan-HDAC degrader by switching the recruited E3 ligase. A detailed profiling of the anticancer properties of 1j demonstrated its significant antiproliferative activity against both hematological and solid cancer cell lines, driven by cell cycle arrest and apoptosis induction.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":" ","pages":"e202500035"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202500035","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Proteolysis-targeting chimeras (PROTACs) have recently gained popularity as targeted protein degradation (TPD) promises to overcome the limitations of occupancy-driven pharmacology. However, most degraders rely on a small number of E3 ligases. In this study, we present the first-in-class histone deacetylase (HDAC) PROTACs recruiting the DDB1- and CUL4- associated factor 11 (DCAF11). We established a synthesis route entirely on solid-phase to prepare a set of eleven degraders. The long and flexible spacer bearing FF2039 (1j) showed significant HDAC1 and 6 degradation in combination with cytotoxicity against the multiple myeloma cell line MM.1S. Further investigations revealed that 1j was also able to degrade HDAC isoforms of class I, IIa and IIb. Compared to our previously published cereblon-recruiting HDAC6 selective PROTAC A6, we succesfully transformed the selective degrader into a pan-HDAC degrader by switching the recruited E3 ligase. A detailed profiling of the anticancer properties of 1j demonstrated its significant antiproliferative activity against both hematological and solid cancer cell lines, driven by cell cycle arrest and apoptosis induction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemMedChem
ChemMedChem 医学-药学
CiteScore
6.70
自引率
2.90%
发文量
280
审稿时长
1 months
期刊介绍: Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs. Contents ChemMedChem publishes an attractive mixture of: Full Papers and Communications Reviews and Minireviews Patent Reviews Highlights and Concepts Book and Multimedia Reviews.
期刊最新文献
Replacing a Cereblon Ligand by a DDB1 and CUL4 Associated Factor 11 (DCAF11) Recruiter Converts a Selective Histone Deacetylase 6 PROTAC into a pan-degrader. An Effective Reaction-based Virtual Screening Method to Discover new CDK8 Ligands. Metal-Catalyzed Cross-Coupling for the Synthesis of β-Lactam Drugs and Related Chemical Probes. Front Cover: [18F]NP3-627, a Candidate PET Imaging Agent Targeting the NLRP3 Inflammasome in the Central Nervous System (ChemMedChem 4/2025) Cover Feature: Design, Synthesis, and Anti-Prostate Cancer Potential of 2-(4-Nitrobenzyl) Malonates In Vitro and DAL Acute Oral Toxicity Assessment In Vivo (ChemMedChem 4/2025)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1