{"title":"Interactive 3D Objects Enhance Scientific Communication of Structural Data.","authors":"Daniel Mokos, Bastian Daniel","doi":"10.1002/cbic.202500036","DOIUrl":null,"url":null,"abstract":"<p><p>In scientific communication about three-dimensional structures, creating two-dimensional representations is standard practice. These representations often suffer from the drawback of losing potential information due to dimensionality reduction. Several options exist to present, share and publish 3D figures, however based on recent publications they are not widely utilized. Here we present simple ways to preserve the three-dimensionality of the structure by the creation of a custom-made model in GLTF format that is generated in the same workflow as the conventional figures. They can be published alongside a given manuscript with minimal additional effort to the authors, but a huge impact on the communicative power of the manuscript concerning the three-dimensional features of the reported structures. The scripts we adapted and published for this purpose open up new possibilities for the illustrator and allow the viewer to access the full three-dimensionality of the published structure. In future, this can simplify the publication process of protein structures or other models and be a valuable tool for scientific communication in digital or printed form.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e202500036"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202500036","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In scientific communication about three-dimensional structures, creating two-dimensional representations is standard practice. These representations often suffer from the drawback of losing potential information due to dimensionality reduction. Several options exist to present, share and publish 3D figures, however based on recent publications they are not widely utilized. Here we present simple ways to preserve the three-dimensionality of the structure by the creation of a custom-made model in GLTF format that is generated in the same workflow as the conventional figures. They can be published alongside a given manuscript with minimal additional effort to the authors, but a huge impact on the communicative power of the manuscript concerning the three-dimensional features of the reported structures. The scripts we adapted and published for this purpose open up new possibilities for the illustrator and allow the viewer to access the full three-dimensionality of the published structure. In future, this can simplify the publication process of protein structures or other models and be a valuable tool for scientific communication in digital or printed form.
期刊介绍:
ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).