Distinctive autophagy/mitophagy biomarker profiles in frontotemporal lobar degeneration and Alzheimer's disease.

IF 6.2 2区 医学 Q1 NEUROSCIENCES Acta Neuropathologica Communications Pub Date : 2025-02-20 DOI:10.1186/s40478-025-01954-9
Kateřina Veverová, Alžběta Katonová, Hana Horáková, Jan Laczó, Francesco Angelucci, Jakub Hort, Sofie Lautrup, Evandro Fei Fang, Martin Vyhnálek
{"title":"Distinctive autophagy/mitophagy biomarker profiles in frontotemporal lobar degeneration and Alzheimer's disease.","authors":"Kateřina Veverová, Alžběta Katonová, Hana Horáková, Jan Laczó, Francesco Angelucci, Jakub Hort, Sofie Lautrup, Evandro Fei Fang, Martin Vyhnálek","doi":"10.1186/s40478-025-01954-9","DOIUrl":null,"url":null,"abstract":"<p><p>Maintaining cellular homeostasis by removing damaged and senescent mitochondria, a process termed mitophagy, is crucial in preventing Alzheimer's disease (AD) and represents a promising therapeutic target. Our previous research revealed altered mitophagy biomarkers, such as increased CSF and serum PINK1 and serum BNIP3L and decreased serum TFEB levels, indicating impaired autophagy-lysosomal degradation in the AD continuum. However, the role of autophagy/mitophagy in frontotemporal lobar degeneration (FTLD) remains unclear. This study investigated the biomarkers of autophagy/mitophagy and lysosomal biogenesis (PINK1, ULK1, BNIP3L, and TFEB) in biofluids (CSF and serum) from 308 biomarker-defined individuals across the FTLD continuum (FTLD-dementia, n = 29; FTLD-MCI, n = 33) and compared them with those across the AD continuum (MCI-AD, n = 100; AD-dementia, n = 100) and cognitively unimpaired (CU) controls (n = 46) recruited from Czech Brain Aging Study. Additionally, we compared the mitophagy biomarkers across different FTLD clinical subtypes (frontal, semantic and nonfluent variant) with CU, and explored the association between mitophagy biomarkers and clinical phenotypes of FTLD (biomarkers of tau, biomarkers of neurodegeneration, cognition and ATN profile).Our findings indicated a significantly lower CSF PINK1 and ULK1 levels in FTLD compared to AD, with FTLD dementia showing particularly low CSF PINK1 levels compared to AD-dementia. Conversely, CSF ULK1 levels were higher in FTLD-MCI compared to AD-dementia. Serum analyses revealed lower PINK1 and higher TFEB levels in FTLD dementia compared to AD dementia. This study provides compelling evidence of distinct alterations in autophagy/mitophagy biomarkers between FTLD and AD, indicating that these neurodegenerative diseases may affect the cellular waste disposal system through different pathways. This is the first study to explore mitophagy biomarkers in human CSF and serum in FTLD, opening avenues for further research and potential clinical applications.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"13 1","pages":"37"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841012/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40478-025-01954-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Maintaining cellular homeostasis by removing damaged and senescent mitochondria, a process termed mitophagy, is crucial in preventing Alzheimer's disease (AD) and represents a promising therapeutic target. Our previous research revealed altered mitophagy biomarkers, such as increased CSF and serum PINK1 and serum BNIP3L and decreased serum TFEB levels, indicating impaired autophagy-lysosomal degradation in the AD continuum. However, the role of autophagy/mitophagy in frontotemporal lobar degeneration (FTLD) remains unclear. This study investigated the biomarkers of autophagy/mitophagy and lysosomal biogenesis (PINK1, ULK1, BNIP3L, and TFEB) in biofluids (CSF and serum) from 308 biomarker-defined individuals across the FTLD continuum (FTLD-dementia, n = 29; FTLD-MCI, n = 33) and compared them with those across the AD continuum (MCI-AD, n = 100; AD-dementia, n = 100) and cognitively unimpaired (CU) controls (n = 46) recruited from Czech Brain Aging Study. Additionally, we compared the mitophagy biomarkers across different FTLD clinical subtypes (frontal, semantic and nonfluent variant) with CU, and explored the association between mitophagy biomarkers and clinical phenotypes of FTLD (biomarkers of tau, biomarkers of neurodegeneration, cognition and ATN profile).Our findings indicated a significantly lower CSF PINK1 and ULK1 levels in FTLD compared to AD, with FTLD dementia showing particularly low CSF PINK1 levels compared to AD-dementia. Conversely, CSF ULK1 levels were higher in FTLD-MCI compared to AD-dementia. Serum analyses revealed lower PINK1 and higher TFEB levels in FTLD dementia compared to AD dementia. This study provides compelling evidence of distinct alterations in autophagy/mitophagy biomarkers between FTLD and AD, indicating that these neurodegenerative diseases may affect the cellular waste disposal system through different pathways. This is the first study to explore mitophagy biomarkers in human CSF and serum in FTLD, opening avenues for further research and potential clinical applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Neuropathologica Communications
Acta Neuropathologica Communications Medicine-Pathology and Forensic Medicine
CiteScore
11.20
自引率
2.80%
发文量
162
审稿时长
8 weeks
期刊介绍: "Acta Neuropathologica Communications (ANC)" is a peer-reviewed journal that specializes in the rapid publication of research articles focused on the mechanisms underlying neurological diseases. The journal emphasizes the use of molecular, cellular, and morphological techniques applied to experimental or human tissues to investigate the pathogenesis of neurological disorders. ANC is committed to a fast-track publication process, aiming to publish accepted manuscripts within two months of submission. This expedited timeline is designed to ensure that the latest findings in neuroscience and pathology are disseminated quickly to the scientific community, fostering rapid advancements in the field of neurology and neuroscience. The journal's focus on cutting-edge research and its swift publication schedule make it a valuable resource for researchers, clinicians, and other professionals interested in the study and treatment of neurological conditions.
期刊最新文献
Curative timed NK cell-based immunochemotherapy aborts brain tumour recurrence driven by mesenchymal glioma stem cells. Chromogen-based double immunohistochemical detection of mitochondrial respiratory chain deficiencies in human brain tissue. Spatiotemporal perturbations of the plasminogen activation system in a rat model of acute organophosphate intoxication. Metabolic profiling of adult and pediatric gliomas reveals enriched glucose availability in pediatric gliomas and increased fatty acid oxidation in adult gliomas. Cranial radiation disrupts dopaminergic signaling and connectivity in the mammalian brain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1