Daniel B Kurbanov, Farida Ahangari, Taylor Adams, Ruben De Man, Jessica Tang, Marianne Carlon, Nebal Abu Hussein, Emmanuela Cortesi, Marta Zapata, Laurens De Sadeleer, Wim Wuyts, Bart Vanaudenaerde, Naftali Kaminski, John E McDonough
{"title":"Epigenetic Age Acceleration in Idiopathic Pulmonary Fibrosis Revealed by DNA Methylation Clocks.","authors":"Daniel B Kurbanov, Farida Ahangari, Taylor Adams, Ruben De Man, Jessica Tang, Marianne Carlon, Nebal Abu Hussein, Emmanuela Cortesi, Marta Zapata, Laurens De Sadeleer, Wim Wuyts, Bart Vanaudenaerde, Naftali Kaminski, John E McDonough","doi":"10.1152/ajplung.00171.2024","DOIUrl":null,"url":null,"abstract":"<p><p>In this research, we delve into the association between epigenetic aging and idiopathic pulmonary fibrosis (IPF), a debilitating lung disease that progresses over time. Utilizing the Illumina MethylationEPIC array, we assessed DNA methylation levels in donated human lung tissue from IPF patients, categorizing the disease into mild, moderate, and severe stages based on clinical assessments. We employed seven epigenetic clocks to determine age acceleration, which is the discrepancy between biological (epigenetic) and chronological age. Our findings revealed a notable acceleration of biological aging in IPF tissues compared to healthy controls, with four clocks-Horvath's, Hannum's, PhenoAge, and DunedinPACE-showing significant correlations. DunedinPACE, in particular, indicated a more rapid aging process in the more severe regions within the lungs of IPF cases. These results suggest that the biological aging process in IPF is expedited and closely tied to the severity of the disease. The study underscores the potential of DNA methylation as a biomarker for IPF, providing valuable insights into the underlying methylation patterns and the dynamics of epigenetic aging in affected lung tissue. This research supports the broader application of epigenetic clocks in clinical prognosis and highlights the critical role of biological age in the context of medical research and healthcare.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00171.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this research, we delve into the association between epigenetic aging and idiopathic pulmonary fibrosis (IPF), a debilitating lung disease that progresses over time. Utilizing the Illumina MethylationEPIC array, we assessed DNA methylation levels in donated human lung tissue from IPF patients, categorizing the disease into mild, moderate, and severe stages based on clinical assessments. We employed seven epigenetic clocks to determine age acceleration, which is the discrepancy between biological (epigenetic) and chronological age. Our findings revealed a notable acceleration of biological aging in IPF tissues compared to healthy controls, with four clocks-Horvath's, Hannum's, PhenoAge, and DunedinPACE-showing significant correlations. DunedinPACE, in particular, indicated a more rapid aging process in the more severe regions within the lungs of IPF cases. These results suggest that the biological aging process in IPF is expedited and closely tied to the severity of the disease. The study underscores the potential of DNA methylation as a biomarker for IPF, providing valuable insights into the underlying methylation patterns and the dynamics of epigenetic aging in affected lung tissue. This research supports the broader application of epigenetic clocks in clinical prognosis and highlights the critical role of biological age in the context of medical research and healthcare.
期刊介绍:
The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.