The effect of ultrasonic tip working length on fluid dynamics in the root canal during the irrigation procedure: a computational fluid dynamics study.

IF 2.6 2区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE BMC Oral Health Pub Date : 2025-02-19 DOI:10.1186/s12903-025-05620-3
Weihan Wu, Yuxuan Chen, Chunshi Tong, Bohua Li, Xin Ma
{"title":"The effect of ultrasonic tip working length on fluid dynamics in the root canal during the irrigation procedure: a computational fluid dynamics study.","authors":"Weihan Wu, Yuxuan Chen, Chunshi Tong, Bohua Li, Xin Ma","doi":"10.1186/s12903-025-05620-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Root canal irrigation is essential for infection control during root canal treatment. Ultrasonic irrigation is a common method of root canal irrigation used in the clinical practice; however, the working length of ultrasonic tip can influence the fluid dynamics of the irrigant. Different from previous studies which often utilized simplified models, this study aims to utilize the computational fluid dynamic (CFD) and finite element method to evaluate the flow dynamics characteristics of the irrigation fluid when the ultrasonic tip was placed at different depths in the root canal and to predict crack extension during ultrasonic cleaning, based on the real tooth model.</p><p><strong>Methods: </strong>Images of the mandibular first premolar teeth were scanned using cone beam computed tomography (CBCT), and then imported into the software for three-dimensional reconstruction. ICEM CFD 18.0 software was used to establish the root canal irrigation. The ultrasonic working tip was positioned at distances from the apex stop of 1 mm, 1.5 mm, 2 mm, 2.5 mm, and 3 mm (i.e., the five different working lengths of the working tip are 10 mm, 9.5 mm, 9 mm, 8.5 mm, and 8 mm) respectively. Irrigation velocity, wall shear stress and volume fraction in the root canal were visualized after setting the computing conditions. A dentin microcrack model was established by ABAQUS 6.14 software to predict crack extension during ultrasonic cleaning.</p><p><strong>Results: </strong>The CFD analysis showed that increasing the work length of the ultrasonic tip significantly increased vapor volume fraction, and wall shear stress, while reducing apical pressure. Notably, despite changes in the placement of the ultrasonic working tip, the velocity of irrigant always gradually decreases within the area 1 mm in front of the working tip. The pressure on the root canal significantly lower than the ultimate tensile strength of dentin.</p><p><strong>Conclusion: </strong>Increasing the working length can influence vapor volume fraction, wall shear stress and apical pressure. The pressure on the root canal does not cause the dentin microcrack propagation, in order to provide a reference for clinical application.</p>","PeriodicalId":9072,"journal":{"name":"BMC Oral Health","volume":"25 1","pages":"266"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Oral Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12903-025-05620-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Root canal irrigation is essential for infection control during root canal treatment. Ultrasonic irrigation is a common method of root canal irrigation used in the clinical practice; however, the working length of ultrasonic tip can influence the fluid dynamics of the irrigant. Different from previous studies which often utilized simplified models, this study aims to utilize the computational fluid dynamic (CFD) and finite element method to evaluate the flow dynamics characteristics of the irrigation fluid when the ultrasonic tip was placed at different depths in the root canal and to predict crack extension during ultrasonic cleaning, based on the real tooth model.

Methods: Images of the mandibular first premolar teeth were scanned using cone beam computed tomography (CBCT), and then imported into the software for three-dimensional reconstruction. ICEM CFD 18.0 software was used to establish the root canal irrigation. The ultrasonic working tip was positioned at distances from the apex stop of 1 mm, 1.5 mm, 2 mm, 2.5 mm, and 3 mm (i.e., the five different working lengths of the working tip are 10 mm, 9.5 mm, 9 mm, 8.5 mm, and 8 mm) respectively. Irrigation velocity, wall shear stress and volume fraction in the root canal were visualized after setting the computing conditions. A dentin microcrack model was established by ABAQUS 6.14 software to predict crack extension during ultrasonic cleaning.

Results: The CFD analysis showed that increasing the work length of the ultrasonic tip significantly increased vapor volume fraction, and wall shear stress, while reducing apical pressure. Notably, despite changes in the placement of the ultrasonic working tip, the velocity of irrigant always gradually decreases within the area 1 mm in front of the working tip. The pressure on the root canal significantly lower than the ultimate tensile strength of dentin.

Conclusion: Increasing the working length can influence vapor volume fraction, wall shear stress and apical pressure. The pressure on the root canal does not cause the dentin microcrack propagation, in order to provide a reference for clinical application.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Oral Health
BMC Oral Health DENTISTRY, ORAL SURGERY & MEDICINE-
CiteScore
3.90
自引率
6.90%
发文量
481
审稿时长
6-12 weeks
期刊介绍: BMC Oral Health is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of disorders of the mouth, teeth and gums, as well as related molecular genetics, pathophysiology, and epidemiology.
期刊最新文献
Stainability of 3D-printed resins for denture base and artificial teeth. The effect of ultrasonic tip working length on fluid dynamics in the root canal during the irrigation procedure: a computational fluid dynamics study. The heterogeneity of T cell infiltration in human periapical lesions. Unbalanced occlusal loading elicited remodeling responses in growing rat temporomandibular joints and Notch1/Hes1 signaling pathway expression. Assessment of two methods for detecting carious dentin: an in vitro study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1