Biochanin A Mitigates Pressure Overload-Induced Cardiac Hypertrophy Through Modulation of the NF-κB/Cbl-b/NLRP3 Signaling Axis.

IF 3.1 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Cardiovascular Drugs and Therapy Pub Date : 2025-02-20 DOI:10.1007/s10557-025-07677-2
Lina Ba, Nan Wu, Xiang Feng, Ruixuan Wang, Zhichao Zhao, Rui Wang, Renling Liu, Pilong Shi, Hongli Sun, Hanping Qi
{"title":"Biochanin A Mitigates Pressure Overload-Induced Cardiac Hypertrophy Through Modulation of the NF-κB/Cbl-b/NLRP3 Signaling Axis.","authors":"Lina Ba, Nan Wu, Xiang Feng, Ruixuan Wang, Zhichao Zhao, Rui Wang, Renling Liu, Pilong Shi, Hongli Sun, Hanping Qi","doi":"10.1007/s10557-025-07677-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The purpose of this study was to investigate the protective effects of biochanin A (BCA) on cardiac hypertrophy and to elucidate the underlying molecular mechanisms. The research question was whether BCA can reverse heart dysfunction and attenuate cardiomyocyte hypertrophy induced by pressure overload and AngII, respectively, and how it interacts with the NLRP3 pyroptosis pathway to achieve these effects.</p><p><strong>Methods: </strong>We employed an animal model of pressure overload-induced cardiac hypertrophy and an in vitro model of AngII-induced cardiomyocyte hypertrophy to assess the effects of BCA. The expression of NLRP3 and its related signaling molecules was analyzed by western blotting, and the activity of the NLRP3 pathway was measured using pyroptosis assays. The role of Cbl-b, an E3 ubiquitin ligase, in BCA-mediated NLRP3 inhibition was also investigated.</p><p><strong>Results: </strong>BCA was found to reverse heart dysfunction and attenuate cardiomyocyte hypertrophy induced by pressure overload and AngII. Mechanistically, BCA mitigated cardiac hypertrophy by targeting the NLRP3 pyroptosis pathway. The reduction in NLRP3 expression by BCA was predominantly mediated through the upregulation of Cbl-b, which enhanced the ubiquitination and subsequent degradation of NLRP3. Additionally, BCA facilitated the upregulation of Cbl-b expression by interacting with NF-κB, preventing NF-κB binding to the promoter region of Cbl-b and reversing its suppressive action on Cbl-b expression.</p><p><strong>Conclusion: </strong>This study provides initial evidence that BCA can protect against cardiac hypertrophy. Its mechanism of action involves interacting with NF-κB to promote the expression of Cbl-b, which facilitates the ubiquitination and degradation of NLRP3, ultimately inhibiting pyroptosis. This finding suggests that BCA may be a potential therapeutic agent for the treatment of cardiac hypertrophy.</p>","PeriodicalId":9557,"journal":{"name":"Cardiovascular Drugs and Therapy","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Drugs and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10557-025-07677-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The purpose of this study was to investigate the protective effects of biochanin A (BCA) on cardiac hypertrophy and to elucidate the underlying molecular mechanisms. The research question was whether BCA can reverse heart dysfunction and attenuate cardiomyocyte hypertrophy induced by pressure overload and AngII, respectively, and how it interacts with the NLRP3 pyroptosis pathway to achieve these effects.

Methods: We employed an animal model of pressure overload-induced cardiac hypertrophy and an in vitro model of AngII-induced cardiomyocyte hypertrophy to assess the effects of BCA. The expression of NLRP3 and its related signaling molecules was analyzed by western blotting, and the activity of the NLRP3 pathway was measured using pyroptosis assays. The role of Cbl-b, an E3 ubiquitin ligase, in BCA-mediated NLRP3 inhibition was also investigated.

Results: BCA was found to reverse heart dysfunction and attenuate cardiomyocyte hypertrophy induced by pressure overload and AngII. Mechanistically, BCA mitigated cardiac hypertrophy by targeting the NLRP3 pyroptosis pathway. The reduction in NLRP3 expression by BCA was predominantly mediated through the upregulation of Cbl-b, which enhanced the ubiquitination and subsequent degradation of NLRP3. Additionally, BCA facilitated the upregulation of Cbl-b expression by interacting with NF-κB, preventing NF-κB binding to the promoter region of Cbl-b and reversing its suppressive action on Cbl-b expression.

Conclusion: This study provides initial evidence that BCA can protect against cardiac hypertrophy. Its mechanism of action involves interacting with NF-κB to promote the expression of Cbl-b, which facilitates the ubiquitination and degradation of NLRP3, ultimately inhibiting pyroptosis. This finding suggests that BCA may be a potential therapeutic agent for the treatment of cardiac hypertrophy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cardiovascular Drugs and Therapy
Cardiovascular Drugs and Therapy 医学-心血管系统
CiteScore
8.30
自引率
0.00%
发文量
110
审稿时长
4.5 months
期刊介绍: Designed to objectively cover the process of bench to bedside development of cardiovascular drug, device and cell therapy, and to bring you the information you need most in a timely and useful format, Cardiovascular Drugs and Therapy takes a fresh and energetic look at advances in this dynamic field. Homing in on the most exciting work being done on new therapeutic agents, Cardiovascular Drugs and Therapy focusses on developments in atherosclerosis, hyperlipidemia, diabetes, ischemic syndromes and arrhythmias. The Journal is an authoritative source of current and relevant information that is indispensable for basic and clinical investigators aiming for novel, breakthrough research as well as for cardiologists seeking to best serve their patients. Providing you with a single, concise reference tool acknowledged to be among the finest in the world, Cardiovascular Drugs and Therapy is listed in Web of Science and PubMed/Medline among other abstracting and indexing services. The regular articles and frequent special topical issues equip you with an up-to-date source defined by the need for accurate information on an ever-evolving field. Cardiovascular Drugs and Therapy is a careful and accurate guide through the maze of new products and therapies which furnishes you with the details on cardiovascular pharmacology that you will refer to time and time again.
期刊最新文献
Biochanin A Mitigates Pressure Overload-Induced Cardiac Hypertrophy Through Modulation of the NF-κB/Cbl-b/NLRP3 Signaling Axis. Evaluating the Methodological Rigor and Recommendation Excellence of TAVR Guidelines: Insights from AGREE II and AGREE-REX Instruments. Downregulated TRIM35 Alleviates Doxorubicin-Induced Cardiotoxicity by Suppressing Oxidative Stress and Inflammation via Inhibiting TLR4/NF-κB Pathway. The Beta-Blocker Dilemma: Revisiting Their Role in Cardiovascular Disease. Doxorubicin-Induced Cardiotoxicity: Can Andrographolide Provide a Silver Lining?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1