Overfeeding induces adipose tissue release of distinct mitochondria.

IF 6.9 1区 生物学 Q1 CELL BIOLOGY Cell reports Pub Date : 2025-02-25 Epub Date: 2025-02-18 DOI:10.1016/j.celrep.2025.115318
Joshua H Goodman, Chloé Berland, Rajesh K Soni, Anthony W Ferrante
{"title":"Overfeeding induces adipose tissue release of distinct mitochondria.","authors":"Joshua H Goodman, Chloé Berland, Rajesh K Soni, Anthony W Ferrante","doi":"10.1016/j.celrep.2025.115318","DOIUrl":null,"url":null,"abstract":"<p><p>Overfeeding animals beyond what they eat ad libitum causes rapid adipose tissue expansion, leading to an unusual form of obesity characterized by low immune cell accumulation in fat and sustained anorexia. To investigate how overfeeding affects adipose tissue, we studied the protein secretome of fat from equally obese overfed and ad libitum-fed mice. Fat from overfed animals secretes lower amounts of immune regulatory proteins. Unexpectedly, fat from overfed mice releases larger amounts of mitochondrial proteins. Microscopy identified mitochondria in the conditioned medium of cultured fat that were found not within extracellular vesicles but rather as free extracellular organelles. The protein profile of released mitochondria was distinct from the mitochondrial protein profile of the whole fat, suggesting that the metabolic stress of overfeeding leads to the release of a mitochondrial subset favoring de novo lipogenesis. These findings add to growing evidence that cells alter their energy profiles through the release of mitochondria.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 2","pages":"115318"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115318","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Overfeeding animals beyond what they eat ad libitum causes rapid adipose tissue expansion, leading to an unusual form of obesity characterized by low immune cell accumulation in fat and sustained anorexia. To investigate how overfeeding affects adipose tissue, we studied the protein secretome of fat from equally obese overfed and ad libitum-fed mice. Fat from overfed animals secretes lower amounts of immune regulatory proteins. Unexpectedly, fat from overfed mice releases larger amounts of mitochondrial proteins. Microscopy identified mitochondria in the conditioned medium of cultured fat that were found not within extracellular vesicles but rather as free extracellular organelles. The protein profile of released mitochondria was distinct from the mitochondrial protein profile of the whole fat, suggesting that the metabolic stress of overfeeding leads to the release of a mitochondrial subset favoring de novo lipogenesis. These findings add to growing evidence that cells alter their energy profiles through the release of mitochondria.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
过度喂养诱导脂肪组织释放不同的线粒体。
过度喂养动物会导致脂肪组织迅速扩张,导致一种不寻常的肥胖形式,其特征是脂肪中免疫细胞的积累不足和持续的厌食症。为了研究过度喂养如何影响脂肪组织,我们研究了同样肥胖的过度喂养和自由喂养小鼠的脂肪蛋白质分泌组。过度喂养的动物的脂肪分泌较少的免疫调节蛋白。出乎意料的是,过量喂食的老鼠体内的脂肪会释放出更多的线粒体蛋白。显微镜下发现线粒体在培养脂肪的条件培养基中,不是在细胞外囊泡中发现的,而是作为自由的细胞外细胞器发现的。释放的线粒体蛋白质谱与全脂肪的线粒体蛋白质谱不同,这表明过度喂养的代谢应激导致有利于重新脂肪生成的线粒体亚群的释放。这些发现进一步证明,细胞通过释放线粒体来改变它们的能量分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell reports
Cell reports CELL BIOLOGY-
CiteScore
13.80
自引率
1.10%
发文量
1305
审稿时长
77 days
期刊介绍: Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted. The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership. The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.
期刊最新文献
Cell-type-independent infection dynamics of clinical Pseudomonas aeruginosa isolates in human airway epithelial models. SERPINA3 mediates liver cancer cells escape from chemotherapy-induced neutrophil extracellular trap killing. Single-cell resolution functional networks during unconsciousness are segregated into spatially intermixed modules. Full dopamine coding of basic economic subjective value: Utility and weighted probability. Distances and charges along the Orai1 nexus-TM3 interface control STIM1 binding and pore opening.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1