Dynamic Visualization of Computer-Aided Peptide Design for Cancer Therapeutics.

IF 4.7 2区 医学 Q1 CHEMISTRY, MEDICINAL Drug Design, Development and Therapy Pub Date : 2025-02-15 eCollection Date: 2025-01-01 DOI:10.2147/DDDT.S497126
Dan Hou, Haobin Zhou, Yuting Tang, Ziyuan Liu, Lin Su, Junkai Guo, Janak Lal Pathak, Lihong Wu
{"title":"Dynamic Visualization of Computer-Aided Peptide Design for Cancer Therapeutics.","authors":"Dan Hou, Haobin Zhou, Yuting Tang, Ziyuan Liu, Lin Su, Junkai Guo, Janak Lal Pathak, Lihong Wu","doi":"10.2147/DDDT.S497126","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Cancer stands as a significant global public health concern, with traditional therapies potentially yielding severe side effects. Peptide-based cancer therapy is increasingly employed for diseases like cancer due to its advantages of excellent targeting, biocompatibility, and convenient synthesis. With advancements in computer technology and bioinformatics, rational design strategies based on computer technology have been employed to develop more cost-effective and potent anticancer peptides (ACPs). This study aims to explore the current status, hotspots, and future trends in the field of computer-aided design of peptides for cancer treatment through a bibliometric analysis.</p><p><strong>Methods: </strong>A total of 1547 relevant publications published from 2006 to 2024 were collected from the Web of Science Core Collection. Bibliometric analysis was conducted using tools like CiteSpace, VOSviewer, Bibliometrix, Origin, and an online bibliometric platform.</p><p><strong>Results: </strong>The research in this field has shown a steady growth trend, with the United States and China making the most significant contributions. Currently, ACP research mainly focuses on cell-penetrating peptides related to drug delivery, which are expected to become future research hotspots. Beyond that, peptide vaccines associated with immunotherapy are also worthy of attention. In addition, molecular dynamics simulation and molecular docking are currently popular research methods. At the same time, deep learning is the emerging keyword, indicating its potential for a more significant impact on future peptide design.</p><p><strong>Conclusion: </strong>Deep learning technology represents emerging research hotspots with immense potential and promising prospects. As cutting-edge research directions, cellularly penetrating peptides and polypeptide immunotherapy are expected to achieve breakthroughs in cancer treatment. This study provides valuable insights into the computer-aided design of peptides in cancer therapy, contributing significantly to advancing the in-depth research and applications in this area.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"19 ","pages":"1043-1065"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837852/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S497126","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Cancer stands as a significant global public health concern, with traditional therapies potentially yielding severe side effects. Peptide-based cancer therapy is increasingly employed for diseases like cancer due to its advantages of excellent targeting, biocompatibility, and convenient synthesis. With advancements in computer technology and bioinformatics, rational design strategies based on computer technology have been employed to develop more cost-effective and potent anticancer peptides (ACPs). This study aims to explore the current status, hotspots, and future trends in the field of computer-aided design of peptides for cancer treatment through a bibliometric analysis.

Methods: A total of 1547 relevant publications published from 2006 to 2024 were collected from the Web of Science Core Collection. Bibliometric analysis was conducted using tools like CiteSpace, VOSviewer, Bibliometrix, Origin, and an online bibliometric platform.

Results: The research in this field has shown a steady growth trend, with the United States and China making the most significant contributions. Currently, ACP research mainly focuses on cell-penetrating peptides related to drug delivery, which are expected to become future research hotspots. Beyond that, peptide vaccines associated with immunotherapy are also worthy of attention. In addition, molecular dynamics simulation and molecular docking are currently popular research methods. At the same time, deep learning is the emerging keyword, indicating its potential for a more significant impact on future peptide design.

Conclusion: Deep learning technology represents emerging research hotspots with immense potential and promising prospects. As cutting-edge research directions, cellularly penetrating peptides and polypeptide immunotherapy are expected to achieve breakthroughs in cancer treatment. This study provides valuable insights into the computer-aided design of peptides in cancer therapy, contributing significantly to advancing the in-depth research and applications in this area.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Drug Design, Development and Therapy
Drug Design, Development and Therapy CHEMISTRY, MEDICINAL-PHARMACOLOGY & PHARMACY
CiteScore
9.00
自引率
0.00%
发文量
382
审稿时长
>12 weeks
期刊介绍: Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications. The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas. Specific topics covered by the journal include: Drug target identification and validation Phenotypic screening and target deconvolution Biochemical analyses of drug targets and their pathways New methods or relevant applications in molecular/drug design and computer-aided drug discovery* Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes) Structural or molecular biological studies elucidating molecular recognition processes Fragment-based drug discovery Pharmaceutical/red biotechnology Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products** Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing) Preclinical development studies Translational animal models Mechanisms of action and signalling pathways Toxicology Gene therapy, cell therapy and immunotherapy Personalized medicine and pharmacogenomics Clinical drug evaluation Patient safety and sustained use of medicines.
期刊最新文献
Irisin Mitigates Doxorubicin-Induced Cardiotoxicity by Reducing Oxidative Stress and Inflammation via Modulation of the PERK-eIF2α-ATF4 Pathway. Dynamic Visualization of Computer-Aided Peptide Design for Cancer Therapeutics. Lipid Nanovesicles in Cancer Treatment: Improving Targeting and Stability of Antisense Oligonucleotides. NLRP3 Inflammasome Targeting Offers a Novel Therapeutic Paradigm for Sepsis-Induced Myocardial Injury. Identification of Key Genes in Esketamine's Therapeutic Effects on Perioperative Neurocognitive Disorders via Transcriptome Sequencing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1