{"title":"Integrated bioinformatics analysis of the effects of chronic pain on patients with spinal cord injury.","authors":"Jinlong Zhang, Longju Qi, Yuyu Sun, Shiyuan Chen, Jinyi Liu, Jiaxi Chen, Fangsu Yan, Wenqi Wang, Qinghua Wang, Liang Chen","doi":"10.3389/fncel.2025.1457740","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Spinal cord injury (SCI) poses a substantial challenge in contemporary medicine, significantly impacting patients and society. Emerging research highlights a strong association between SCI and chronic pain, yet the molecular mechanisms remain poorly understood. To address this, we conducted bioinformatics and systems biology analyses to identify molecular biomarkers and pathways that link SCI to chronic pain. This study aims to elucidate these mechanisms and identify potential therapeutic targets.</p><p><strong>Methods: </strong>Through analysis of the GSE151371 and GSE177034 databases, we identified differentially expressed genes (DEGs) linked to SCI and chronic pain. This analysis uncovered shared pathways, proteins, transcription factor networks, hub genes, and potential therapeutic drugs. Regression analysis on the hub genes facilitated the development of a prognostic risk model. Additionally, we conducted an in-depth examination of immune infiltration in SCI to elucidate its correlation with chronic pain.</p><p><strong>Results: </strong>Analyzing 101 DEGs associated with SCI and chronic pain, we constructed a protein interaction network and identified 15 hub genes. Using bioinformatics tools, we further identified 4 potential candidate genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed a strong correlation between SCI and chronic pain, particularly related to inflammation. Additionally, we examined the relationship between SCI and immune cell infiltration, discovering a significant link between SCI and T cell activation. This is notable as activated T cells can cause persistent inflammation and chronic pain. Lastly, we analyzed the hub genes to explore the transcription factor network, potential therapeutic drugs, and ceRNA networks.</p><p><strong>Conclusion: </strong>The analysis of 15 hub genes as significant biological markers for SCI and chronic pain has led to the identification of several potential drugs for treatment.</p>","PeriodicalId":12432,"journal":{"name":"Frontiers in Cellular Neuroscience","volume":"19 ","pages":"1457740"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835904/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cellular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncel.2025.1457740","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Spinal cord injury (SCI) poses a substantial challenge in contemporary medicine, significantly impacting patients and society. Emerging research highlights a strong association between SCI and chronic pain, yet the molecular mechanisms remain poorly understood. To address this, we conducted bioinformatics and systems biology analyses to identify molecular biomarkers and pathways that link SCI to chronic pain. This study aims to elucidate these mechanisms and identify potential therapeutic targets.
Methods: Through analysis of the GSE151371 and GSE177034 databases, we identified differentially expressed genes (DEGs) linked to SCI and chronic pain. This analysis uncovered shared pathways, proteins, transcription factor networks, hub genes, and potential therapeutic drugs. Regression analysis on the hub genes facilitated the development of a prognostic risk model. Additionally, we conducted an in-depth examination of immune infiltration in SCI to elucidate its correlation with chronic pain.
Results: Analyzing 101 DEGs associated with SCI and chronic pain, we constructed a protein interaction network and identified 15 hub genes. Using bioinformatics tools, we further identified 4 potential candidate genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed a strong correlation between SCI and chronic pain, particularly related to inflammation. Additionally, we examined the relationship between SCI and immune cell infiltration, discovering a significant link between SCI and T cell activation. This is notable as activated T cells can cause persistent inflammation and chronic pain. Lastly, we analyzed the hub genes to explore the transcription factor network, potential therapeutic drugs, and ceRNA networks.
Conclusion: The analysis of 15 hub genes as significant biological markers for SCI and chronic pain has led to the identification of several potential drugs for treatment.
期刊介绍:
Frontiers in Cellular Neuroscience is a leading journal in its field, publishing rigorously peer-reviewed research that advances our understanding of the cellular mechanisms underlying cell function in the nervous system across all species. Specialty Chief Editors Egidio D‘Angelo at the University of Pavia and Christian Hansel at the University of Chicago are supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.